4 resultados para Lipase Production
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The lipase produced by a newly isolate Sporidiobolus pararoseus strain has potential catalysis ability for esterification reactions. In order to improve its synthetic activity, this work aimed at optimizing 'synthetic lipase' production by submerged fermentation of a conventional media based on peptone, yeast extract, NaCl and olive oil using experimental design technique. According to the results obtained in the first experimental design (2(4-1)), yeast extract and NaCl concentrations were tested to further optimization by response surface methodology. The maximum 'synthetic lipase' activity obtained was 26.9 U/mL in the optimized media (5.0, 6.8, 7.0 and 1.0% (wt/v) of peptone, yeast extract, NaCl and olive oil, respectively), representing a 6.36-fold increase compared to the initial medium. The time course of 'synthetic lipase' production in the optimized condition was evaluated in terms of synthetic activity, protease activity, biomass and total carbon and the maximum synthetic activity was observed during the stationary phase of growth.
Resumo:
Current studies about lipase production involve the use of agro-industrial residues and newly isolated microorganisms aimed at increasing economic attractiveness of the process. Based on these aspects, the main objective of this work is to perform the partial characterization of enzymatic extracts produced by a newly isolated Penicillium crustosum in solid-state fermentation. Lipase extract presented optimal temperature and pH of 37 A degrees C and 9-10, respectively. The concentrated enzymatic extract showed more stability at 25 A degrees C and pH 7. The enzymes kept 100% of their enzymatic activity until 60 days of storage at 4 and -10 A degrees C. The stability under calcium salts indicated that the hydrolytic activity presented decay with the increase of calcium concentration. The specificity under several substrates indicated good enzyme activities in triglycerides from C4 to C18.
Resumo:
Transesterification of palm oil with ethanol catalyzed by Pseudomonas fluorescens lipase immobilized on epoxy-polysiloxane-polyvinyl alcohol composite (epoxy-SiO2-PVA) was performed in a continuous packed-bed reactor (PBR). Two strategies were used for improving the miscibility of the substrates: the addition of the organic solvent tert-butanol and the surfactant Triton X-100. Results were compared to those obtained in a solventless reactor, which displayed a biphasic system that passed through the reactor. Using this system, the ethyl ester yield of 61.6 +/- 1.2% was obtained at steady state. Both Triton X-100 and tert-butanol systems were found to be suitable to promote the miscibility of the starting materials; however, the use of Triton X-100 reduced the yield to levels lower than 20%, because of the enzyme desorption from the support surface, as confirmed by scanning electron microscopy analysis. The best performance was found for the reactor running in the presence of tert-butanol which resulted in a stable operating system and an average yield of 87.6 +/- 2.5%. This strategy also gave high biocatalyst operational stability, revealing a half-life of 48 days and an inactivation constant of 0.6 X 10(-3) h(-1).
Resumo:
Aspergillus phoenicis is an interesting heat tolerant fungus that can synthesize enzymes with several applications in the food industry due to its great hydrolytic potential. In this work, the fungus produced high enzymatic levels when cultivated on inexpensive culture media consisting of flakes from different origins such as cassava flour, wheat fibre, crushed soybean, agro-industrial wastes, starch, glucose or maltose. Several enzymatic systems were produced from these carbon sources, but amylase was the most evident, followed by pectinase and xylanase. Traces of CMCases, avicelase, lipase, β-xylosidase, β-glucosidase and α-glucosidase activities were also detected. Amylases were produced on rye flakes, starch, oat flakes, corn flakes, cassava flour and wheat fibre. Significant amylolytic levels were produced in the culture medium with glucose or when this sugar was exhausted, suggesting an enzyme in the constitutive form. Cassava flour, rye, oats, barley and corn flakes were also used as substrates in the hydrolytic reactions, aiming to verify the liberation potential of reducing sugars. Corn flakes induced greater liberation of reducing sugars as compared to the others. Thin layer chromatography of the reaction end products showed that the hydrolysis of cassava flour liberated maltooligosaccharides, but cassava flour and corn, rye, oats and barley flakes were hydrolyzed to glucose. These results suggested the presence of glucoamylase and α-amylase as part of the enzymatic pool of A. phoencis.