5 resultados para Linearized higher-derivative gravity
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
In this work, we employ renormalization group methods to study the general behavior of field theories possessing anisotropic scaling in the spacetime variables. The Lorentz symmetry breaking that accompanies these models are either soft, if no higher spatial derivative is present, or it may have a more complex structure if higher spatial derivatives are also included. Both situations are discussed in models with only scalar fields and also in models with fermions as a Yukawa-like model.
Resumo:
We study the isotropization of a homogeneous, strongly coupled, non-Abelian plasma by means of its gravity dual. We compare the time evolution of a large number of initially anisotropic states as determined, on the one hand, by the full nonlinear Einstein's equations and, on the other, by the Einstein's equations linearized around the final equilibrium state. The linear approximation works remarkably well even for states that exhibit large anisotropies. For example, it predicts with a 20% accuracy the isotropization time, which is of the order of t(iso) less than or similar to 1/T, with T the final equilibrium temperature. We comment on possible extensions to less symmetric situations.
Resumo:
The wide variety of molecular architectures used in sensors and biosensors and the large amount of data generated with some principles of detection have motivated the use of computational methods, such as information visualization techniques, not only to handle the data but also to optimize sensing performance. In this study, we combine projection techniques with micro-Raman scattering and atomic force microscopy (AFM) to address critical issues related to practical applications of electronic tongues (e-tongues) based on impedance spectroscopy. Experimentally, we used sensing units made with thin films of a perylene derivative (AzoPTCD acronym), coating Pt interdigitated electrodes, to detect CuCl(2) (Cu(2+)), methylene blue (MB), and saccharose in aqueous solutions, which were selected due to their distinct molecular sizes and ionic character in solution. The AzoPTCD films were deposited from monolayers to 120 nm via Langmuir-Blodgett (LB) and physical vapor deposition (PVD) techniques. Because the main aspects investigated were how the interdigitated electrodes are coated by thin films (architecture on e-tongue) and the film thickness, we decided to employ the same material for all sensing units. The capacitance data were projected into a 2D plot using the force scheme method, from which we could infer that at low analyte concentrations the electrical response of the units was determined by the film thickness. Concentrations at 10 mu M or higher could be distinguished with thinner films tens of nanometers at most-which could withstand the impedance measurements, and without causing significant changes in the Raman signal for the AzoPTCD film-forming molecules. The sensitivity to the analytes appears to be related to adsorption on the film surface, as inferred from Raman spectroscopy data using MB as analyte and from the multidimensional projections. The analysis of the results presented may serve as a new route to select materials and molecular architectures for novel sensors and biosensors, in addition to suggesting ways to unravel the mechanisms behind the high sensitivity obtained in various sensors.
Resumo:
Abstract Background The public health system of Brazil is structured by a network of increasing complexity, but the low resolution of emergency care at pre-hospital units and the lack of organization of patient flow overloaded the hospitals, mainly the ones of higher complexity. The knowledge of this phenomenon induced Ribeirão Preto to implement the Medical Regulation Office and the Mobile Emergency Attendance System. The objective of this study was to analyze the impact of these services on the gravity profile of non-traumatic afflictions in a University Hospital. Methods The study conducted a retrospective analysis of the medical records of 906 patients older than 13 years of age who entered the Emergency Care Unit of the Hospital of the University of São Paulo School of Medicine at Ribeirão Preto. All presented acute non-traumatic afflictions and were admitted to the Internal Medicine, Surgery or Neurology Departments during two study periods: May 1996 (prior to) and May 2001 (after the implementation of the Medical Regulation Office and Mobile Emergency Attendance System). Demographics and mortality risk levels calculated by Acute Physiology and Chronic Health Evaluation II (APACHE II) were determined. Results From 1996 to 2001, the mean age increased from 49 ± 0.9 to 52 ± 0.9 (P = 0.021), as did the percentage of co-morbidities, from 66.6 to 77.0 (P = 0.0001), the number of in-hospital complications from 260 to 284 (P = 0.0001), the mean calculated APACHE II mortality risk increased from 12.0 ± 0.5 to 14.8 ± 0.6 (P = 0.0008) and mortality rate from 6.1 to 12.2 (P = 0.002). The differences were more significant for patients admitted to the Internal Medicine Department. Conclusion The implementation of the Medical Regulation and Mobile Emergency Attendance System contributed to directing patients with higher gravity scores to the Emergency Care Unit, demonstrating the potential of these services for hierarchical structuring of pre-hospital networks and referrals.
Resumo:
Abstract Background Extracellular matrix proteins are key factors that influence the regenerative capacity of tissues. The objective of the present study was to evaluate the effects of enamel matrix derivative (EMD), TGF-β1, and the combination of both factors (EMD+TGF-β1) on human osteoblastic cell cultures. Methods Cells were obtained from alveolar bone of three adult patients using enzymatic digestion. Effects of EMD, TGF-β1, or a combination of both were analyzed on cell proliferation, bone sialoprotein (BSP), osteopontin (OPN) and alkaline phosphatase (ALP) immunodetection, total protein synthesis, ALP activity and bone-like nodule formation. Results All treatments significantly increased cell proliferation compared to the control group at 24 h and 4 days. At day 7, EMD group showed higher cell proliferation compared to TGF-β1, EMD + TGF-β1 and the control group. OPN was detected in the majority of the cells for all groups, whereas fluorescence intensities for ALP labeling were greater in the control than in treated groups; BSP was not detected in all groups. All treatments decreased ALP levels at 7 and 14 days and bone-like nodule formation at 21 days compared to the control group. Conclusions The exposure of human osteoblastic cells to EMD, TGF-β1 and the combination of factors in vitro supports the development of a less differentiated phenotype, with enhanced proliferative activity and total cell number, and reduced ALP activity levels and matrix mineralization.