6 resultados para Linear Order
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
In this work we introduce a relaxed version of the constant positive linear dependence constraint qualification (CPLD) that we call RCPLD. This development is inspired by a recent generalization of the constant rank constraint qualification by Minchenko and Stakhovski that was called RCRCQ. We show that RCPLD is enough to ensure the convergence of an augmented Lagrangian algorithm and that it asserts the validity of an error bound. We also provide proofs and counter-examples that show the relations of RCRCQ and RCPLD with other known constraint qualifications. In particular, RCPLD is strictly weaker than CPLD and RCRCQ, while still stronger than Abadie's constraint qualification. We also verify that the second order necessary optimality condition holds under RCRCQ.
Resumo:
This work addresses the solution to the problem of robust model predictive control (MPC) of systems with model uncertainty. The case of zone control of multi-variable stable systems with multiple time delays is considered. The usual approach of dealing with this kind of problem is through the inclusion of non-linear cost constraint in the control problem. The control action is then obtained at each sampling time as the solution to a non-linear programming (NLP) problem that for high-order systems can be computationally expensive. Here, the robust MPC problem is formulated as a linear matrix inequality problem that can be solved in real time with a fraction of the computer effort. The proposed approach is compared with the conventional robust MPC and tested through the simulation of a reactor system of the process industry.
Resumo:
In this paper we obtain asymptotic expansions, up to order n(-1/2) and under a sequence of Pitman alternatives, for the nonnull distribution functions of the likelihood ratio, Wald, score and gradient test statistics in the class of symmetric linear regression models. This is a wide class of models which encompasses the t model and several other symmetric distributions with longer-than normal tails. The asymptotic distributions of all four statistics are obtained for testing a subset of regression parameters. Furthermore, in order to compare the finite-sample performance of these tests in this class of models, Monte Carlo simulations are presented. An empirical application to a real data set is considered for illustrative purposes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This work presents the application of Linear Matrix Inequalities to the robust and optimal adjustment of Power System Stabilizers with pre-defined structure. Results of some tests show that gain and zeros adjustments are sufficient to guarantee robust stability and performance with respect to various operating points. Making use of the flexible structure of LMI's, we propose an algorithm that minimizes the norm of the controllers gain matrix while it guarantees the damping factor specified for the closed loop system, always using a controller with flexible structure. The technique used here is the pole placement, whose objective is to place the poles of the closed loop system in a specific region of the complex plane. Results of tests with a nine-machine system are presented and discussed, in order to validate the algorithm proposed. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
A rigorous asymptotic theory for Wald residuals in generalized linear models is not yet available. The authors provide matrix formulae of order O(n(-1)), where n is the sample size, for the first two moments of these residuals. The formulae can be applied to many regression models widely used in practice. The authors suggest adjusted Wald residuals to these models with approximately zero mean and unit variance. The expressions were used to analyze a real dataset. Some simulation results indicate that the adjusted Wald residuals are better approximated by the standard normal distribution than the Wald residuals.
Resumo:
Considerable effort has been made in recent years to optimize materials properties for magnetic hyperthermia applications. However, due to the complexity of the problem, several aspects pertaining to the combined influence of the different parameters involved still remain unclear. In this paper, we discuss in detail the role of the magnetic anisotropy on the specific absorption rate of cobalt-ferrite nanoparticles with diameters ranging from 3 to 14 nm. The structural characterization was carried out using x-ray diffraction and Rietveld analysis and all relevant magnetic parameters were extracted from vibrating sample magnetometry. Hyperthermia investigations were performed at 500 kHz with a sinusoidal magnetic field amplitude of up to 68 Oe. The specific absorption rate was investigated as a function of the coercive field, saturation magnetization, particle size, and magnetic anisotropy. The experimental results were also compared with theoretical predictions from the linear response theory and dynamic hysteresis simulations, where exceptional agreement was found in both cases. Our results show that the specific absorption rate has a narrow and pronounced maxima for intermediate anisotropy values. This not only highlights the importance of this parameter but also shows that in order to obtain optimum efficiency in hyperthermia applications, it is necessary to carefully tailor the materials properties during the synthesis process. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729271]