6 resultados para Limits of Stability
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Objective: To compare the efficacy of balance training associated with muscle strengthening or stretching, relative to no intervention, in the postural control of elderly women with osteoporosis. Design: A randomized, controlled trial. Subjects and interventions: Sample consisted of 50 women aged 65 years or older, with osteoporosis, randomized into one of three groups: strengthening group (n = 17) performed balance training with muscle strengthening; stretching group (n = 17) performed balance training with stretching; and control group (n = 16), no activities. Interventions lasted eight weeks, twice a week, 60 minutes a day. Main measures: Postural control was evaluated by the modified Clinical Test of Sensory Interaction for Balance (CTSIBm) and Limits of Stability Test. Strength was assessed by dynamometry and the shortening of the hamstrings by goniometry. Results: Relative to controls, participants in the strengthening group displayed significantly increased dorsiflexion strength and knee flexion strength, as well as centre of pressure velocity, directional control, and oscillation velocity (CTSIBm test). The stretching group had significantly improvements in hamstring length, knee flexion strength, centre of pressure velocity, and amplitude of movements. Relative to the stretching group, the strengthening group yielded better knee extension strength and directional control. Conclusion: The results suggest that both interventions are effective in improving postural control when compared to the control group, and the strengthening group was superior to the stretching group in knee extension strength and in directional control.
Resumo:
The existing characterization of stability regions was developed under the assumption that limit sets on the stability boundary are exclusively composed of hyperbolic equilibrium points and closed orbits. The characterizations derived in this technical note are a generalization of existing results in the theory of stability regions. A characterization of the stability boundary of general autonomous nonlinear dynamical systems is developed under the assumption that limit sets on the stability boundary are composed of a countable number of disjoint and indecomposable components, which can be equilibrium points, closed orbits, quasi-periodic solutions and even chaotic invariant sets.
Resumo:
The stability of two recently developed pressure spaces has been assessed numerically: The space proposed by Ausas et al. [R.F. Ausas, F.S. Sousa, G.C. Buscaglia, An improved finite element space for discontinuous pressures, Comput. Methods Appl. Mech. Engrg. 199 (2010) 1019-1031], which is capable of representing discontinuous pressures, and the space proposed by Coppola-Owen and Codina [A.H. Coppola-Owen, R. Codina, Improving Eulerian two-phase flow finite element approximation with discontinuous gradient pressure shape functions, Int. J. Numer. Methods Fluids, 49 (2005) 1287-1304], which can represent discontinuities in pressure gradients. We assess the stability of these spaces by numerically computing the inf-sup constants of several meshes. The inf-sup constant results as the solution of a generalized eigenvalue problems. Both spaces are in this way confirmed to be stable in their original form. An application of the same numerical assessment tool to the stabilized equal-order P-1/P-1 formulation is then reported. An interesting finding is that the stabilization coefficient can be safely set to zero in an arbitrary band of elements without compromising the formulation's stability. An analogous result is also reported for the mini-element P-1(+)/P-1 when the velocity bubbles are removed in an arbitrary band of elements. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A complete characterization of the stability boundary of a class of nonlinear dynamical systems that admit energy functions is developed in this paper. This characterization generalizes the existing results by allowing the type-zero saddle-node nonhyperbolic equilibrium points on the stability boundary. Conceptual algorithms to obtain optimal estimates of the stability region (basin of attraction) in the form of level sets of a given family of energy functions are derived. The behavior of the stability region and the corresponding estimates are investigated for parameter variation in the neighborhood of a type-zero saddle-node bifurcation value.
Resumo:
de Lima-Pardini AC, Papegaaij S, Cohen RG, Teixeira LA, Smith BA, Horak FB. The interaction of postural and voluntary strategies for stability in Parkinson's disease. J Neurophysiol 108: 1244-1252, 2012. First published June 6, 2012; doi:10.1152/jn.00118.2012.-This study assessed the effects of stability constraints of a voluntary task on postural responses to an external perturbation in subjects with Parkinson's disease (PD) and healthy elderly participants. Eleven PD subjects and twelve control subjects were perturbed with backward surface translations while standing and performing two versions of a voluntary task: holding a tray with a cylinder placed with the flat side down [low constraint (LC)] or with the rolling, round side down [high constraint (HC)]. Participants performed alternating blocks of LC and HC trials. PD participants accomplished the voluntary task as well as control subjects, showing slower tray velocity in the HC condition compared with the LC condition. However, the latency of postural responses was longer in the HC condition only for control subjects. Control subjects presented different patterns of hip-shoulder coordination as a function of task constraint, whereas PD subjects had a relatively invariant pattern. Initiating the experiment with the HC task led to 1) decreased postural stability in PD subjects only and 2) reduced peak hip flexion in control subjects only. These results suggest that PD impairs the capacity to adapt postural responses to constraints imposed by a voluntary task.
Resumo:
Little is known about the benefits of low-level laser therapy (LLLT) on improvement of stability of dental implants. The aim of this randomized clinical study was to assess the LLLT effect on implants stability by means of resonance frequency analysis (RFA). Thirty implants were distributed bilaterally in the posterior mandible of eight patients. At the experimental side, the implants were submitted to LLLT (830 nm, 86 mW, 92.1 J/cm(2), 0.25 J, 3 s/point, at 20 points), and on the control side, the irradiation was simulated (placebo). The first irradiation was performed in the immediate postoperative period, and it was repeated every 48 h in the first 14 days. The initial implant stability quotient (ISQ) of the implants was measured by means of RFA. New ISQ measurements were made after 10 days, 3, 6, 9, and 12 weeks. The initial ISQ values ranged from 65-84, with a mean of 76, undergoing a significant drop in stability from the 10th day to the 6th week in the irradiated group, and presenting a gradual increase from the 6th to the 12th week. The highest ISQ values were observed on the 10th day in the irradiated group, and the lowest in the 6th week in both groups. Under the conditions of this study, no evidence was found of any effect of LLLT on the stability of the implants when measured by RFA. Since high primary stability and good bone quality are of major relevancy for a rigid bone-implant interface, additional LLLT may have little impact macroscopically.