5 resultados para Lie Group

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work is concerned with dynamical systems in presence of symmetries and reversing symmetries. We describe a construction process of subspaces that are invariant by linear Gamma-reversible-equivariant mappings, where Gamma is the compact Lie group of all the symmetries and reversing symmetries of such systems. These subspaces are the sigma-isotypic components, first introduced by Lamb and Roberts in (1999) [10] and that correspond to the isotypic components for purely equivariant systems. In addition, by representation theory methods derived from the topological structure of the group Gamma, two algebraic formulae are established for the computation of the sigma-index of a closed subgroup of Gamma. The results obtained here are to be applied to general reversible-equivariant systems, but are of particular interest for the more subtle of the two possible cases, namely the non-self-dual case. Some examples are presented. (C) 2011 Elsevier BM. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Let G be a compact Lie group. Let X, Y be free G-spaces. In this paper, by using the numerical index i (X; R), under cohomological conditions on the spaces X and Y, we consider the question of the existence of G-equivariant maps f: X -> Y.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is shown that the correct mathematical implementation of symmetry in the geometric formulation of classical field theory leads naturally beyond the concept of Lie groups and their actions on manifolds, out into the realm of Lie group bundles and, more generally, of Lie groupoids and their actions on fiber bundles. This applies not only to local symmetries, which lie at the heart of gauge theories, but is already true even for global symmetries when one allows for fields that are sections of bundles with (possibly) non-trivial topology or, even when these are topologically trivial, in the absence of a preferred trivialization. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report aims at giving a general overview on the classification of the maximal subgroups of compact Lie groups (not necessarily connected). In the first part, it is shown that these fall naturally into three types: (1) those of trivial type, which are simply defined as inverse images of maximal subgroups of the corresponding component group under the canonical projection and whose classification constitutes a problem in finite group theory, (2) those of normal type, whose connected one-component is a normal subgroup, and (3) those of normalizer type, which are the normalizers of their own connected one-component. It is also shown how to reduce the classification of maximal subgroups of the last two types to: (2) the classification of the finite maximal Sigma-invariant subgroups of centerfree connected compact simple Lie groups and (3) the classification of the Sigma-primitive subalgebras of compact simple Lie algebras, where Sigma is a subgroup of the corresponding outer automorphism group. In the second part, we explicitly compute the normalizers of the primitive subalgebras of the compact classical Lie algebras (in the corresponding classical groups), thus arriving at the complete classification of all (non-discrete) maximal subgroups of the compact classical Lie groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context. Convergent point (CP) search methods are important tools for studying the kinematic properties of open clusters and young associations whose members share the same spatial motion. Aims. We present a new CP search strategy based on proper motion data. We test the new algorithm on synthetic data and compare it with previous versions of the CP search method. As an illustration and validation of the new method we also present an application to the Hyades open cluster and a comparison with independent results. Methods. The new algorithm rests on the idea of representing the stellar proper motions by great circles over the celestial sphere and visualizing their intersections as the CP of the moving group. The new strategy combines a maximum-likelihood analysis for simultaneously determining the CP and selecting the most likely group members and a minimization procedure that returns a refined CP position and its uncertainties. The method allows one to correct for internal motions within the group and takes into account that the stars in the group lie at different distances. Results. Based on Monte Carlo simulations, we find that the new CP search method in many cases returns a more precise solution than its previous versions. The new method is able to find and eliminate more field stars in the sample and is not biased towards distant stars. The CP solution for the Hyades open cluster is in excellent agreement with previous determinations.