4 resultados para Lethal concentration
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Efficiency of neem oil nanoformulations to Bemisia tabaci (GENN.) Biotype B (Hemiptera: Aleyrodidae)
Resumo:
The nanotechnology, through encapsulation of active ingredients, has showed an important way to avoid problems with quickly degradation of the pesticide molecules. Thus, neem (Azadirachta indica) oil nanoformulations containing beta-ciclodextrin and poli-epsilon-caprolactone (PCL) were tested as to their control efficiency against eggs and nymphs of Bemisia tabaci (Genn.) biotype B reared in soybean. The Lethal Concentration (LC50) was estimated using a commercial neem oil (Organic Neem (R)) on first-instar nymphs to establish the adequate volume of the nanoformulations per treatment. After that, they were sprayed on eggs and first-instar nymphs in laboratory and greenhouse and on third-instar nymphs in greenhouse. The commercial neem oil and distilled water were used as controls. Egg viability was not affected by any treatment. Among six nanoformulations, only one was efficient against the first-instar nymphs in laboratory conditions. However, its effective period was not increased as expected. In greenhouse, first-instar nymphs were more affected by two nanoformulations which were significantly different of the commercial neem oil - the most effective one. No mortality differences among the formulations in the third-instar test were observed. The nanoformulations were less efficient to control the B. tabaci biotype B nymphs than the commercial neem oil.
Resumo:
The aim of this study was to evaluate the acute toxicity of atrazine and picloram separately to grass carp (Ctenopharyngodon idella). Firstly, fingerlings were exposed to nominal concentrations of these herbicides to determine the lethal concentration (LC50) (96 h). After this, the animals were treated with sub-acute concentrations of the herbicides to measure the effects on gill histology. The LC50 (96 h) of the atrazine and picloram were, respectively, 37mg L-1 and 4.4 mgL(-1). Four types of alterations were found in gills exposed to atrazine, which were epithelial lifting, partial cell proliferation, lamellar fusion, and aneurysm. Nominal concentrations of picloram caused epithelial lifting, partial cell proliferation, and lamellar fusion.
Resumo:
Freshwater snails of the genus Biomphalaria play a major role as intermediate hosts of Schistosoma mansoni, the etiologic agent of schistosomiasis. While Biomphalaria spp. control by molluscicides is one of the main strategies to reduce the snail population in infected areas, there are few effective molluscicides commercially available. Natural products may be considered as potentially useful and safe molluscicides. We have evaluated the molluscicidal activity of 12 extracts from ten marine organisms on adult and embryonic stages of Biomphalaria glabrata. Only extracts of the red algae Liagora farinosa and of the sponge Amphimedon viridis presented molluscicidal activity. Lethal concentration (LC)(50) values obtained were 120 mu g/mL for L. farinosa CH2Cl2 extract (apolar fraction) and 20 mu g/mL for A. viridis extract and halitoxin. The polar alga fraction and halitoxin had no effect on B. glabrata embryos. The algae apolar fraction was active on B. glabrata in all embryonic development stages, with LC50 values for blastulae at 42 mu g/mL, gastrulae at 124 mu g/mL, trochophore at 180 mu g/mL, and veliger at 222 mu g/mL. This is the first report of extracts from marine organisms which presented molluscicidal activity.
Resumo:
Our goal was to demonstrate the in vivo tumor specific accumulation of crotamine, a natural peptide from the venom of the South American rattlesnake Crotalus durissus terrificus, which has been characterized by our group as a cell penetrating peptide with a high specificity for actively proliferating cells and with a concentration-dependent cytotoxic effect. Crotamine cytotoxicity has been shown to be dependent on the disruption of lysosomes and subsequent activation of intracellular proteases. In this work, we show that the cytotoxic effect of crotamine also involves rapid intracellular calcium release and loss of mitochondrial membrane potential as observed in real time by confocal microscopy. The intracellular calcium overload induced by crotamine was almost completely blocked by thapsigargin. Microfluorimetry assays confirmed the importance of internal organelles, such as lysosomes and the endoplasmic reticulum, as contributors for the intracellular calcium increase, as well as the extracellular medium. Finally, we demonstrate here that crotamine injected intraperitoneally can efficiently target remote subcutaneous tumors engrafted in nude mice, as demonstrated by a noninvasive optical imaging procedure that permits in vivo real-time monitoring of crotamine uptake into tumor tissue. Taken together, our data indicate that the cytotoxic peptide crotamine can be used potentially for a dual purpose: to target and detect growing tumor tissues and to selectively trigger tumor cell death.