14 resultados para Leishmania (Viannia) braziliensis infecção acidental
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The first autochthonous case of American cutaneous leishmaniasis was reported in the Federal District in 1980, and the species involved in this type of leishmaniasis was unknown. This study aimed to identify the species that causes the disease in the Federal District and to investigate its clinical and epidemiological aspects. Between 2000 and 2007, 71 autochthonous cases of leishmaniasis were reported in the Federal District. Leishmania species were identified by means of direct immunofluorescence reactions using monoclonal antibodies and restriction fragment length polymorphism. The species of 40 (56.33%) out of 71 samples were identified. Thirty-six (90%) were identified as Leishmania (Viannia) braziliensis and four (10%) were identified as Leishmania (Leishmania) amazonensis. In this area, the disease had clinical and epidemiological characteristics similar to those found in other Brazilian regions.
Resumo:
Background: Parasites of the Leishmania genus alternate between the flagellated extracellular promastigote stage and intracellular amastigotes. Here we report the characterization of a Leishmania isolate, obtained from a cutaneous leishmaniasis patient, which presents peculiar morphological features. Methods: The parasite was cultured in vitro and characterized morphologically using optical and electron microscopy. Identification was performed based on monoclonal antibodies and internal ribosomal spacer typing. In vitro macrophage cultures, murine experimental models and sand fly infections were used to evaluate infectivity in vitro and in vivo. Results: The isolate was identified as Leishmania (Viannia) braziliensis. In the atypical promastigotes grown in culture, a short flagellum surrounded or interrupted by a protuberance of disorganized material was observed. A normal axoneme was present close to the basal body but without elongation much further outside the flagellar pocket. A disorganized swelling at the precocious end of the axoneme coincided with the lack of a paraflagellar rod structure. The isolate was able to infect macrophages in vitro, induce lesions in BALB/c mice and infect Lutzomyia longipalpis. Conclusions: Notwithstanding the lack of an extracellular flagellum, this isolate infects macrophages in vitro and produces lesions when inoculated into mice. Moreover, it is able to colonize phlebotomine sand flies. Considering the importance attributed to the flagellum in the successful infection and survival of Leishmania in the insect midgut and in the invasion of macrophages, these findings may bring new light into the infectious mechanisms of L. (V.) braziliensis.
Resumo:
The aim of this study was to compare the techniques of indirect immunofluorescence assay (IFA) and flow cytometry to clinical and laboratorial evaluation of patients before and after clinical cure and to evaluate the applicability of flow cytometry in post-therapeutic monitoring of patients with American tegumentary leishmaniasis (ATL). Sera from 14 patients before treatment (BT), 13 patients 1 year after treatment (AT), 10 patients 2 and 5 years AT were evaluated. The results from flow cytometry were expressed as levels of IgG reactivity, based on the percentage of positive fluorescent parasites (PPFP). The 1:256 sample dilution allowed us to differentiate individuals BT and AT. Comparative analysis of IFA and flow cytometry by ROC (receiver operating characteristic curve) showed, respectively, AUC (area under curve) = 0.8 (95% CI = 0.64–0.89) and AUC = 0.90 (95% CI = 0.75–0.95), demonstrating that the flow cytometry had equivalent accuracy. Our data demonstrated that 20% was the best cut-off point identified by the ROC curve for the flow cytometry assay. This test showed a sensitivity of 86% and specificity of 77% while the IFA had a sensitivity of 78% and specificity of 85%. The after-treatment screening, through comparative analysis of the technique performance indexes, 1, 2 and 5 years AT, showed an equal performance of the flow cytometry compared with the IFA. However, flow cytometry shows to be a better diagnostic alternative when applied to the study of ATL in the cure criterion. The information obtained in this work opens perspectives to monitor cure after treatment of ATL.
Resumo:
The expression of Langerhans cell (LC) and dermal dendritic cell (dDC) as well as T CD4+ and CD8+ immune responses was evaluated in the skin of BALB/c mice experimentally infected by L. (L.) amazonensis (La) and L. (V.) braziliensis (Lb). At 4th and 8th weeks post infection (PI), skin biopsies were collected to determine the parasite load and CD207+, CD11c+, CD4+, CD8+, iNOS+ cellular densities. Cytokine (IFN-?, IL-4 and IL-10) profiles were also analysed in draining lymph node. At 4th week, the densities of CD207+ and CD11c+ were higher in the La infection, while in the Lb infection, these markers revealed a significant increase at 8th week. At 4th week, CD4+ and CD8+ were higher in the La infection, but at 8th week, there was a substantial increase in both markers in the Lb infection. iNOS+ was higher in the Lb infection at 4th and 8th weeks. In contrast, the parasite load was higher in the La infection at 4th and 8th weeks. The concentration of IFN-? was higher in the Lb infection, but IL-4 and IL-10 were higher in the La infection at 4th and 8th weeks. These results confirm the role of the Leishmania species in the BALB/c mice disease characterized by differences in the expression of dendritic cells and cellular immune response.
Resumo:
Leishmania (Viannia) shawi causes cutaneous lesions in humans. Parasite antigens conferring significant protection against American tegumentar leishmaniosis (ATL) might be important for the development of effective vaccine. Therefore, this work evaluates the protective effect of antigenic fractions released by L. shawi. Antigens released by promastigotes to culture medium were concentrated and isolated by SDS-PAGE. The three main fractions LsPass1 (>75 kDa), LsPass2 (75-50 kDa) and LsPass3 (<50 kDa) were electro-eluted according with their molecular mass. Immunized BALB/c mice were challenged with L. shawi promastigotes and the course of infection monitored during 5 weeks. LsPass1-challenged mice showed no protection, however, a strong degree of protection associated to smaller lesions and high expression of IFN-gamma and TNF-alpha by CD4(+) T, CD8(+) T and double negative CD4CD8 cells was achieved in LsPass3-challenged mice. Furthermore, LsPass2-challenged mice showed an intermediated degree of protection associated to high levels of IFN-gamma, IL-4 and IL-10 mRNA. In spite of increased expression of IFN-gamma and TNF-alpha, high amounts of IL-4 and IL-10 mRNA were also detected in LsPass3-challenged mice indicating a possible contribution of these cytokines for the persistence of a residual number of parasites that may be important in inducing long-lasting immunity. Therefore, LsPass3 seems to be an interesting alternative that should be considered in the development of an effective vaccine against ATL.
Resumo:
Background: Leishmania (Viannia) shawi parasite was first characterized in 1989. Recently the protective effects of soluble leishmanial antigen (SLA) from L. (V.) shawi promastigotes were demonstrated using BALB/c mice, the susceptibility model for this parasite. In order to identify protective fractions, SLA was fractionated by reverse phase HPLC and five antigenic fractions were obtained. Methods: F1 fraction was purified from L. (V.) shawi parasite extract by reverse phase HPLC. BALB/c mice were immunized once a week for two consecutive weeks by subcutaneous routes in the rump, using 25 mu g of F1. After 1 and 16 weeks of last immunization, groups were challenged in the footpad with L. (V.) shawi promastigotes. After 2 months, those same mice were sacrificed and parasite burden, cellular and humoral immune responses were evaluated. Results: The F1 fraction induced a high degree of protection associated with an increase in IFN-gamma, a decrease in IL-4, increased cell proliferation and activation of CD8(+)T lymphocytes. Long-term protection was acquired in F1-immunized mice, associated with increased CD4(+) central memory T lymphocytes and activation of both CD4+ and CD8(+) T cells. In addition, F1-immunized groups showed an increase in IgG2a levels. Conclusions: The inductor capability of antigens to generate memory lymphocytes that can proliferate and secrete beneficial cytokines upon infection could be an important factor in the development of vaccine candidates against American Tegumentary Leishmaniasis.
Resumo:
Leishmania (Viannia) shawi was characterized only recently, and few studies concerning the immunogenic and protective properties of its antigens have been performed. The present study aimed to evaluate the protective potential of the five antigenic fractions isolated from L. (V.) shawi promastigotes in experimental cutaneous leishmaniasis. Soluble antigen from L. (V.) shawi promastigotes was submitted to reverse phase HPLC to purify F1, F2, F3, F4 and F5 antigens. BALB/c mice were immunized once a week for two consecutive weeks by subcutaneous routes in the rump, using 25 mu g protein. After 1 week, groups were challenged in the footpad with L. (V.) shawi promastigotes. After 8 weeks, those same mice were sacrificed and parasite burden as well as the cellular and humoral immune responses were evaluated. F1 and F5-immunized mice restrained lesion progression and parasite load in the skin. However, only the F1 group was able to control the parasitism in lymph nodes, which was associated with low IL-4 and high IFN-gamma production; IgG2a isotype was increased in this group. Immunizations with F2, F3 and F4 antigens did not protect mice. The capability of antigens to restrain IL-4 levels and increase IFN-gamma was associated with protection, such as in immunization using F1 antigen.
Resumo:
This study evaluated the applicability of kDNA-PCR as a prospective routine diagnosis method for American tegumentary leishmaniasis (ATL) in patients from the Instituto de Infectologia Emílio Ribas (IIER), a reference center for infectious diseases in São Paulo - SP, Brazil. The kDNA-PCR method detected Leishmania DNA in 87.5% (112/128) of the clinically suspected ATL patients, while the traditional methods demonstrated the following percentages of positivity: 62.8% (49/78) for the Montenegro skin test, 61.8% (47/76) for direct investigation, and 19.3% (22/114) for in vitro culture. The molecular method was able to confirm the disease in samples considered negative or inconclusive by traditional laboratory methods, contributing to the final clinical diagnosis and therapy of ATL in this hospital. Thus, we strongly recommend the inclusion of kDNA-PCR amplification as an alternative diagnostic method for ATL, suggesting a new algorithm routine to be followed to help the diagnosis and treatment of ATL in IIER.
Resumo:
Background and Objective Cutaneous and mucocutaneous leishmaniasis are diseases characterized by skin or mucosal manifestations. In the new world, Leishmania braziliensis is the main etiological agent of cutaneous leishmaniasis, condition that may evolve to the mucocutaneous form. The therapeutic arsenal routinely employed to treat infected patients is unsatisfactory, especially for pentavalent antimonials, treatment recommended by the WHO, as they are often highly toxic, poorly tolerated and of variable effectiveness. This work aimed to evaluate in vitro the effectiveness of photodynamic antimicrobial chemotherapy as a new approach for the treatment of leishmaniasis. Materials and Methods A laser (??=?660?nm, 40?mW, 4.2?J/cm2, and 8.4?J/cm2, CW) associated to phenothiazine's derivatives (5 and 10?mu g/ml, toluidine blue O, methylene blue, or phenothiazine) on the promastigote forms of L. braziliensis in a single session. Samples were removed and analyzed in a hemocytometer 72?hours after PACT and viability of the parasites was assessed in quadruplicates. Results An important decrease in the number of viable parasites on all treated groups in comparison to their controls was observed as all tested compounds lead to significant parasite lethality being the highest lethality achieved with 10?mu g/ml of TBO. No lethality was observed on groups treated with laser or with any of the compounds separately. Conclusions TBO presented higher parasite lethality in comparison to MB with impressive reduction from 1?hour to 5?minutes of pre-incubation time. Lasers Surg. Med. 44: 850855, 2012. (c) 2012 Wiley Periodicals, Inc.
Resumo:
Tegumentary leishmaniases are caused by approximately 15 species of protozoa of the genus Leishmania. They prevail in tropical and subtropical areas of the Old and New World but human mobility also makes them a medical problem in nonendemic areas. Clinical manifestations may comprise cutaneous and mucocutaneous forms that may be localized, disseminated, or diffuse in distribution and may differ in Old and New World leishmaniases. Diagnosis and treatment vary according to the clinical manifestations, geographic area, and Leishmania species involved. This article highlights the diversity and complexity of tegumentary leishmaniases, which are worsened by human immunodeficiency virus/Leishmania coinfection.
Resumo:
American tegumentary leishmaniasis (ATL) is a disease whose clinical features are strongly related to the type of immune response it induces. Herein we report an atypical presentation of cutaneous leishmaniasis in a woman with a severe and extensive sore located in her leg, and we describe the differences between the usual local immune response in ATL and the local immune response in this patient. We observed an intense inflammatory response characterized by Th1 cells and cytokines with conspicuous expression of Toll-like receptor 3 (TLR-3). Few parasites were present, but there was an extensive tissue damage. We also discuss the immunological factors that could be related to the atypical presentation.
Resumo:
The Hsp70 is an essential molecular chaperone in protein metabolism since it acts as a pivot with other molecular chaperone families. Several co-chaperones act as regulators of the Hsp70 action cycle, as for instance Hip (Hsp70-interacting protein). Hip is a tetratricopeptide repeat protein (TPR) that interacts with the ATPase domain in the Hsp70-ADP state, stabilizing it and preventing substrate dissociation. Molecular chaperones from protozoans, which can cause some neglected diseases, are poorly studied in terms of structure and function. Here, we investigated the structural features of Hip from the protozoa Leishmania braziliensis (LbHip), one of the causative agents of the leishmaniasis disease. LbHip was heterologously expressed and purified in the folded state, as attested by circular dichroism and intrinsic fluorescence emission techniques. LbHip forms an elongated dimer, as observed by analytical gel filtration chromatography, analytical ultracentrifugation and small angle X-ray scattering (SAXS). With the SAXS data a low resolution model was reconstructed, which shed light on the structure of this protein, emphasizing its elongated shape and suggesting its domain organization. We also investigated the chemical-induced unfolding behavior of LbHip and two transitions were observed. The first transition was related to the unfolding of the TPR domain of each protomer and the second transition of the dimer dissociation. Altogether. LbHip presents a similar structure to mammalian Hip, despite their low level of conservation, suggesting that this class of eukaryotic protein may use a similar mechanism of action. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Abstract Background Leishmania parasites are transmitted to their vertebrate hosts by infected Phlebotomine sand flies during the blood meal of the flies. Sand fly saliva is known to enhance Leishmania spp. infection, while pre-exposure to saliva protects mice against parasitic infections. In this study, we investigated the initial inflammatory leucocyte composition induced by one or three inocula of salivary gland extract (SGE) from Lutzomyia longipalpis in the presence or absence of Leishmania braziliensis. Results We demonstrated that inoculating SGE once (SGE-1X) or three times (SGE-3X), which represented a co-inoculation or a pre-exposure to saliva, respectively, resulted in different cellular infiltrate profiles. Whereas SGE-1X led to the recruitment of all leucocytes subtypes including CD4+ T cells, CD4+CD25+ T cells, dendritic cells, macrophages and neutrophils, the immune cell profile in the SGE-3X group differed dramatically, as CD4+ T cells, CD4+CD25+ T cells, dendritic cells, macrophages and neutrophils were decreased and CD8+ T cells were increased. The SGE-1X group did not show differences in the ear lesion size; however, the SGE-1X group harbored a higher number of parasites. On the other hand, the SGE-3X group demonstrated a protective effect against parasitic disease, as the parasite burden was lower even in the earlier stages of the infection, a period in which the SGE-1X group presented with larger and more severe lesions. These effects were also reflected in the cytokine profiles of both groups. Whereas the SGE-1X group presented with a substantial increase in IL-10 production, the SGE-3X group showed an increase in IFN-γ production in the draining lymph nodes. Analysis of the inflammatory cell populations present within the ear lesions, the SGE-1X group showed an increase in CD4+FOXP3+ cells, whereas the CD4+FOXP3+ population was reduced in the SGE-3X group. Moreover, CD4+ T cells and CD8+ T cells producing IFN-γ were highly detected in the ears of the SGE-3X mice prior to infection. In addition, upon treatment of SGE-3X mice with anti-IFN-γ monoclonal antibody, we observed a decrease in the protective effect of SGE-3X against L. braziliensis infection. Conclusions These results indicate that different inocula of Lutzomyia longipalpis salivary gland extract can markedly modify the cellular immune response, which is reflected in the pattern of susceptibility or resistance to Leishmania braziliensis infection.
Resumo:
In silico analyses of Leishmania spp. genome data are a powerful resource to improve the understanding of these pathogens' biology. Trypanosomatids such as Leishmania spp. have their protein-coding genes grouped in long polycistronic units of functionally unrelated genes. The control of gene expression happens by a variety of posttranscriptional mechanisms. The high degree of synteny among Leishmania species is accompanied by highly conserved coding sequences (CDS) and poorly conserved intercoding untranslated sequences. To identify the elements involved in the control of gene expression, we conducted an in silico investigation to find conserved intercoding sequences (CICS) in the genomes of L major, L infantum, and L braziliensis. We used a combination of computational tools, such as Linux-Shell, PERL and R languages, BLAST, MSPcrunch, SSAKE, and Pred-A-Term algorithms to construct a pipeline which was able to: (i) search for conservation in target-regions, (ii) eliminate CICS redundancy and mask repeat elements, (iii) predict the mRNA's extremities, (iv) analyze the distribution of orthologous genes within the generated LeishCICS-clusters, (v) assign GO terms to the LeishCICS-clusters. and (vi) provide statistical support for the gene-enrichment annotation. We associated the LeishCICS-cluster data, generated at the end of the pipeline, with the expression profile oft. donovani genes during promastigote-amastigote differentiation, as previously evaluated by others (GEO accession: GSE21936). A Pearson's correlation coefficient greater than 0.5 was observed for 730 LeishCICS-clusters containing from 2 to 17 genes. The designed computational pipeline is a useful tool and its application identified potential regulatory cis elements and putative regulons in Leishmania. (C) 2012 Elsevier B.V. All rights reserved.