2 resultados para Learning Models
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Discusses the technological changes that affects learning organizations as well as the human, technical, legal and sustainable aspects regarding learning objects repositories creation, maintenance and use. It presents concepts of information objects and learning objects, the functional requirements needed to their storage at Learning Management Systems. The role of Metadata is reviewed concerning learning objects creation and retrieval, followed by considerations about learning object repositories models, community participation/collaborative strategies and potential derived metrics/indicators. As a result of this desktop research, it can be said that not only technical competencies are critical to any learning objects repository implementation, but it urges that an engaged community of interest be establish as a key to support a learning object repository project. On that matter, researchers are applying Activity Theory (Vygostky, Luria y Leontiev) in order to seek joint perceptions and actions involving learning objects repository users, curators and managers, perceived as critical assets to a successful proposal.
Resumo:
Shared attention is a type of communication very important among human beings. It is sometimes reserved for the more complex form of communication being constituted by a sequence of four steps: mutual gaze, gaze following, imperative pointing and declarative pointing. Some approaches have been proposed in Human-Robot Interaction area to solve part of shared attention process, that is, the most of works proposed try to solve the first two steps. Models based on temporal difference, neural networks, probabilistic and reinforcement learning are methods used in several works. In this article, we are presenting a robotic architecture that provides a robot or agent, the capacity of learning mutual gaze, gaze following and declarative pointing using a robotic head interacting with a caregiver. Three learning methods have been incorporated to this architecture and a comparison of their performance has been done to find the most adequate to be used in real experiment. The learning capabilities of this architecture have been analyzed by observing the robot interacting with the human in a controlled environment. The experimental results show that the robotic head is able to produce appropriate behavior and to learn from sociable interaction.