2 resultados para Leakage detection

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective Bacterial species have been found harboring the internal surface of dental implants as consequence of their failed connections. The aim of the present study was to compare the detection frequency of bacterial leakage from human saliva through the implantabutment interface, under non-loading conditions, using either DNA Checkerboard or culture method. Materials and methods Thirty dental implants with hexagonal platforms were connected to pre-machined abutments according to the manufacturers specifications. The assemblies were individually incubated in human saliva under anaerobic conditions for 7 similar to days at 37 degrees C. Afterward, contents from the inner parts of the implants were collected and evaluated with either DNA Checkerboard (s similar to=similar to 15) or culture (n similar to=similar to 15). Subsequently, identification and quantitation of bacterial species from saliva and implants were carried out for the group evaluated with the DNA Checkerboard method. Results Both DNA Checkerboard and culture showed positive signals of bacterial leakage in 6 of the 15 evaluated samples. Capnocytophaga gingivalis and Streptococcus mutans were the most frequently detected species harboring the internal surface of the implants followed by Veillonella parvula. Conclusion Occurrence of bacterial leakage along the implantabutment interface is comparably detected with both DNA Checkerboard hybridization and conventional culture methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the results of research aiming to develop partial discharge detection techniques in high voltage equipment, at substation environment. Measurements of high frequency components of leakage current, at equipments' grounding conductor, were performed. This procedure was performed with the equipment energized and without disconnecting it from the system. The partial discharge generated current pulse is picked up by a high frequency CT, and is detected by an oscilloscope. The partial discharge identification was made considering previously obtained laboratory results, where partial discharges were characterized by means of its time domain signatures. This paper focuses measurements in SF6 circuit breakers. Encouraging results were obtained, showing the feasibility of detecting partial discharges in energized equipment in the laboratory and in the field, in a substation environment, using this method.