4 resultados para Leaf morphology
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Species of Smilax,, also known as greenbrier, are widely distributed in Brazil and their commercial trades are carried out by the extractivism of native species. We the aim to provide information about the germination and development of seedlings in four Smilax species, different experiments were developed under controlled conditions. We evaluated two germination treatments: temperature (30 degrees C and 20-30 degrees C) and light (presence/absence), and for few cases the tetrazolium treatment was applied. A different treatment response was observed among the studied species. Light had a significant influence in S. brasiliensis, with the highest germination rates at 20-30 C in dark conditions. S. campestris showed significant differences among temperature treatments, but not to light; while S. cissoides showed high germination rates (66-78%), independently of treatment. However, S. polyantha had low germination rates (19-24%). After one year, the expanded leaves showed different characteristics among the studied species. Leaves of S. brasiliensis were ovate, coriaceous, three main veins and prickle-like structures only on the midrib on abaxial face. S. campestris leaves were oblong, coriaceous and prickle-like structures were located at the leaf midrib and margin. S. cissoides had ovate-elliptic, membranaceous leaves, with three main veins with prickle-like structures on the abaxial face. S. polyantha leaves showed ovate-elliptic. coriaceous leaves, with three main veins, translucent secondary veins and no prickle-like structures. A seedling identification key was elaborated based on morphological characteristics. Rev. Biol. Trop. 60 (1): 495-504. Epub 2012 March 01.
Resumo:
Protoplast fusion between sweet orange and mandarin/mandarin hybrids scion cultivars was performed following the model "diploid embryogenic callus protoplast + diploid mesophyll-derived protoplast". Protoplasts were isolated from embryogenic calli of 'Pera' and 'Westin' sweet orange cultivars (Citrus sinensis) and from young leaves of 'Fremont', Nules', and 'Thomas' mandarins (C. reticulata), and 'Nova' tangelo [C. reticulata x (C. paradisi x C. reticulata)]. The regenerated plants were characterized based on their leaf morphology (thickness), ploidy level, and simple sequence repeat (SSR) molecular markers. Plants were successfully generated only when 'Pera' sweet orange was used as the embryogenic parent. Fifteen plants were regenerated being 7 tetraploid and 8 diploid. Based on SSR molecular markers analyses all 7 tetraploid regenerated plants revealed to be allotetraploids (somatic hybrids), including 2 from the combination of 'Pera' sweet orange + 'Fremont' mandarin, 3 'Pera' sweet orange + 'Nules' mandarin, and 2 'Pera' sweet orange + 'Nova' tangelo, and all the diploid regenerated plants showed the 'Pera' sweet orange marker profile. Somatic hybrids were inoculated with Alternaria alternata and no disease symptoms were detected 96 h post-inoculation. This hybrid material has the potential to be used as a tetraploid parent in interploid crosses for citrus scion breeding.
Resumo:
We present a new approach to determine the number and composition of guilds, using the hyperdiverse leaf-litter ant fauna as a model, based on appropriate morphological variables and species co-occurrence null models to describe the complex assemblages of interacting Species Community structure at the 1-m(2) scale. We obtained 18 linear morphometric measures from 949 workers of 171 leaf-litter ant species (18762 measurements) surveyed in four Atlantic Forest localities to test whether the assemblages are morphologically structured; the morphological characters were selected to indicate diet and foraging habits. Principal components analysis was used to characterize the morphospace and to describe the guild structure (number of species and composition). The guild proportionality assembly rule (significant tendency toward constant proportion of species in guilds) was assessed at the 1-m(2) scale. Our analysis indicates that the division of leaf-litter ants into guilds is based mainly on microhabitat distribution in the leaf-litter, body size and shape, eye size, and phylogeny. The same guild scheme applied to four more sites shows that different Atlantic Forest areas have the same leaf-fitter ant guilds. The guild proportionality assembly rule was confirmed for most guilds, Suggesting that there are guild-specific limitations on species coexistence within assemblages; on the other hand, in a few cases the variance in guild proportion was greater than expected under the null assumptions. Other studies on ant functional group classification are partially supported by our quantitative morphological analysis. Our results, however, imply that there are more compartments than indicated in previous models, particularly among cryptic species (confined to soil and litter) and tropical climate specialists. We argue that a general null model for the analysis of species association based oil morphology can reveal objectively defined groups and may thus contribute to a robust theory to explain community structure in general and have important consequences on studies of litter ant community ecology in particular.
Resumo:
procera (pro) is a tall tomato (Solanum lycopersicum) mutant carrying a point mutation in the GRAS region of the gene encoding SlDELLA, a repressor in the gibberellin (GA) signaling pathway. Consistent with the SlDELLA loss of function, pro plants display a GA-constitutive response phenotype, mimicking wild-type plants treated with GA(3). The ovaries from both nonemasculated and emasculated pro flowers had very strong parthenocarpic capacity, associated with enhanced growth of preanthesis ovaries due to more and larger cells. pro parthenocarpy is facultative because seeded fruits were obtained by manual pollination. Most pro pistils had exserted stigmas, thus preventing self-pollination, similar to wild-type pistils treated with GA(3) or auxins. However, Style2.1, a gene responsible for long styles in noncultivated tomato, may not control the enhanced style elongation of pro pistils, because its expression was not higher in pro styles and did not increase upon GA(3) application. Interestingly, a high percentage of pro flowers had meristic alterations, with one additional petal, sepal, stamen, and carpel at each of the four whorls, respectively, thus unveiling a role of SlDELLA in flower organ development. Microarray analysis showed significant changes in the transcriptome of preanthesis pro ovaries compared with the wild type, indicating that the molecular mechanism underlying the parthenocarpic capacity of pro is complex and that it is mainly associated with changes in the expression of genes involved in GA and auxin pathways. Interestingly, it was found that GA activity modulates the expression of cell division and expansion genes and an auxin signaling gene (tomato AUXIN RESPONSE FACTOR7) during fruit-set.