8 resultados para Lattice Relaxation

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A mixed-valence complex, [Fe(III)Fe(II)L1(mu-OAc)(2)]BF4 center dot H2O, where the ligand H(2)L1 = 2-{[[3-[((bis-(pyridin-2-ylmethyl)amino)methyl)-2-hydroxy-5-methylbenzyl](pyridin-2-ylmethyl)amino]methyl]phenol}, has been studied with a range of techniques, and, where possible, its properties have been compared to those of the corresponding enzyme system purple acid phosphatase. The (FeFeII)-Fe-III and Fe-2(III) oxidized species were studied spectroelectrochemically. The temperature-dependent population of the S = 3/2 spin states of the heterovalent system, observed using magnetic circular dichroism, confirmed that the dinuclear center is weakly antiferromagnetically coupled (H = -2JS(1).S-2, where J = -5.6 cm(-1)) in a frozen solution. The ligand-to-metal charge-transfer transitions are correlated with density functional theory calculations. The (FeFeII)-Fe-III complex is electron paramagnetic resonance (EPR)-silent, except at very low temperatures (<2 K), because of the broadening caused by the exchange coupling and zero-field-splitting parameters being of comparable magnitude and rapid spin-lattice relaxation. However, a phosphate-bound Fe-2(III) complex showed an EPR spectrum due to population of the S-tot = 3 state (J= -3.5 cm(-1)). The phosphatase activity of the (FeFeII)-Fe-III complex in hydrolysis of bis(2,4-dinitrophenyl)phosphate (k(cat.) = 1.88 x 10(-3) s(-1); K-m = 4.63 x 10(-3) mol L-1) is similar to that of other bimetallic heterovalent complexes with the same ligand. Analysis of the kinetic data supports a mechanism where the initiating nucleophile in the phosphatase reaction is a hydroxide, terminally bound to Fe-III. It is interesting to note that aqueous solutions of [Fe(III)Fe(II)L1(mu-OAc)(2)](+) are also capable of protein cleavage, at mild temperature and pH conditions, thus further expanding the scope of this complex's catalytic promiscuity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

By means of nuclear spin-lattice relaxation rate T-1(-1), we follow the spin dynamics as a function of the applied magnetic field in two gapped quasi-one-dimensional quantum antiferromagnets: the anisotropic spin-chain system NiCl2-4SC(NH2)(2) and the spin-ladder system (C5H12N)(2)CuBr4. In both systems, spin excitations are confirmed to evolve from magnons in the gapped state to spinons in the gapless Tomonaga-Luttinger-liquid state. In between, T-1(-1) exhibits a pronounced, continuous variation, which is shown to scale in accordance with quantum criticality. We extract the critical exponent for T-1(-1), compare it to the theory, and show that this behavior is identical in both studied systems, thus demonstrating the universality of quantum-critical behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The classical magnetoresistance of a two-dimensional electron gas constrained to non-planar topographies, in antidot lattices, and under the influence of tilted magnetic field in arbitrary direction is numerically studied. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use an infinite-range Maier-Saupe model, with two sets of local quadrupolar variables and restricted orientations, to investigate the global phase diagram of a coupled system of two nematic subsystems. The free energy and the equations of state are exactly calculated by standard techniques of statistical mechanics. The nematic-isotropic transition temperature of system A increases with both the interaction energy among mesogens of system B, and the two-subsystem coupling J. This enhancement of the nematic phase is manifested in a global phase diagram in terms of the interaction parameters and the temperature T. We make some comments on the connections of these results with experimental findings for a system of diluted ferroelectric nanoparticles embedded in a nematic liquid-crystalline environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider general d-dimensional lattice ferromagnetic spin systems with nearest neighbor interactions in the high temperature region ('beta' << 1). Each model is characterized by a single site apriori spin distribution taken to be even. We also take the parameter 'alfa' = ('S POT.4') - 3 '(S POT.2') POT.2' > 0, i.e. in the region which we call Gaussian subjugation, where ('S POT.K') denotes the kth moment of the apriori distribution. Associated with the model is a lattice quantum field theory known to contain a particle of asymptotic mass -ln 'beta' and a bound state below the two-particle threshold. We develop a 'beta' analytic perturbation theory for the binding energy of this bound state. As a key ingredient in obtaining our result we show that the Fourier transform of the two-point function is a meromorphic function, with a simple pole, in a suitable complex spectral parameter and the coefficients of its Laurent expansion are analytic in 'beta'.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an analytic description of numerical results for the Landau-gauge SU(2) gluon propagator D(p(2)), obtained from lattice simulations (in the scaling region) for the largest lattice sizes to date, in d = 2, 3 and 4 space-time dimensions. Fits to the gluon data in 3d and in 4d show very good agreement with the tree-level prediction of the refined Gribov-Zwanziger (RGZ) framework, supporting a massive behavior for D(p(2)) in the infrared limit. In particular, we investigate the propagator's pole structure and provide estimates of the dynamical mass scales that can be associated with dimension-two condensates in the theory. In the 2d case, fitting the data requires a noninteger power of the momentum p in the numerator of the expression for D(p(2)). In this case, an infinite-volume-limit extrapolation gives D(0) = 0. Our analysis suggests that this result is related to a particular symmetry in the complex-pole structure of the propagator and not to purely imaginary poles, as would be expected in the original Gribov-Zwanziger scenario.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the role of reactive oxygen species (ROS) and nitric oxide (NO) in ethanol-induced relaxation. Vascular reactivity experiments showed that ethanol (0.03-200 mmol/L) induced relaxation in endothelium-intact and denuded rat aortic rings isolated from male Wistar rats. Pre-incubation of intact or denuded rings with L-NAME (non selective NOS inhibitor, 100 mu mol/L), 7-nitroindazole (selective nNOS inhibitor, 100 mu mol/L), ODQ (selective inhibitor of guanylyl cyclase enzyme, I mu mol/L), glibenclamide (selective blocker of ATP-sensitive K+ channels, 3 mu mol/L) and 4-aminopyridine (selective blocker of voltage-dependent K+ channels, 4-AP, 1 mmol/L) reduced ethanol-induced relaxation. Similarly, tiron (superoxide anion (O-2(-)) scavenger, 1 mmol/L) and catalase (hydrogen peroxide (H2O2) scavenger, 300 U/mL) reduced ethanol-induced relaxation to a similar extent in both endothelium-intact and denuded rings. Finally, prodifen (non-selective cytochrome P450 enzymes inhibitor, 10 mu mol/L) and 4-methylpyrazole (selective alcohol dehydrogenase inhibitor, 10 mu mol/L) reduced ethanol-induced relaxation. In cultured aortic vascular smooth muscle cells (VSMCs), ethanol stimulated generation of NO, which was significantly inhibited by L-NAME. In endothelial cells, flow cytometry studies showed that ethanol increased cytosolic Ca2+ concentration ([Ca2+]c), O-2(-) and cytosolic NO concentration ([NO]c). Tiron inhibited ethanol-induced increase in [Ca-2]c and [NO]c. The major new finding of this work is that ethanol induces relaxation via redox-sensitive and NO-cGMP-dependent pathways through direct effects on ROS production and NO signaling. These findings identify putative molecular mechanisms whereby ethanol, at pharmacological concentrations, influences vascular reactivity. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the global phase diagram of a Maier-Saupe lattice model with the inclusion of shape-disordered degrees of freedom to mimic a mixture of oblate and prolate molecules (discs and cylinders). In the neighborhood of a Landau multicritical point, solutions of the statistical problem can be written as a Landau-de Gennes expansion for the free energy. If the shape-disordered degrees of freedom are quenched, we confirm the existence of a biaxial nematic structure. If orientational and disorder degrees of freedom are allowed to thermalize, this biaxial solution becomes thermodynamically unstable. Also, we use a two-temperature formalism to mimic the presence of two distinct relaxation times, and show that a slight departure from complete thermalization is enough to stabilize a biaxial nematic phase.