17 resultados para Larval development
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Steindachneridion parahybae is a freshwater catfish endemic to the Paraiba do Sul River and is classified as an endangered Neotropical species. An increasing number of conservation biologists are incorporating morphological and physiological research data to help conservation managers in rescue these endangered species. This study investigated the embryonic and larval development of S. parahybae in captivity, with emphasis in major events during the ontogeny of S. parahybae. Broodstocks were artificially induced to reproduce, and the extrusion occurred 200-255 degree-hours after hormonal induction at 24 degrees C. Larval ontogeny was evaluated every 10 minutes under microscopic/stereomicroscopic using fresh eggs samples. The main embryogenic development stages were identified: zygote, cleavage, including the morula, blastula, gastrula phase, organogenesis, and hatching. The extruded oocytes showed an average diameter of 1.10 +/- 0.10 mm, and after fertilization and hydration of eggs, the average diameter of eggs increased to about 1.90 +/- 0.60 mm, characterized by a large perivitelline space that persisted up to embryo development, the double chorion, and the poles (animal and vegetative). Cell division started about 2 minutes after fertilization (AF), resulting in 2, 4, 8 (4 x 2 arrangement of cells), 16 (4 x 4), 32 (4 x 8) and 64 (2 x 4 x 8) cells. Furthermore, the blastula and gastrula stages followed after these cells divisions. The closed blastopore occurred at 11 h 20 min AF; following the development, the organogenetic stages were identified and subdivided respectively in: early segmentation phase and late segmentation phase. In the early segmentation phase, there was the establishment of the embryonic axis, and it was possible to distinguish between the cephalic and caudal regions; somites, and the optic vesicles developed about 20 h AF. Total hatching occurred at 54 h AF, and the larvae average length was 4.30 +/- 0.70 mm. Gradual yolk sac reduction was observed during the first two days of larval development. The first feeding occurred at the end of the second day. During the larval phase, cannibalism, heterogeneous larval growth and photophobia were also observed. This information will be important in improving the artificial reproduction protocols of S. parahybae in controlled breeding programs.
Resumo:
Steindachneridion parahybae is a freshwater catfish endemic to the Paraíba do Sul River and is classified as an endangered Neotropical species. An increasing number of conservation biologists are incorporating morphological and physiological research data to help conservation managers in rescue these endangered species. This study investigated the embryonic and larval development of S. parahybae in captivity, with emphasis in major events during the ontogeny of S. parahybae. Broodstocks were artificially induced to reproduce, and the extrusion occurred 200-255 degree-hours after hormonal induction at 24°C. Larval ontogeny was evaluated every 10 minutes under microscopic/stereomicroscopic using fresh eggs samples. The main embryogenic development stages were identified: zygote, cleavage, including the morula, blastula, gastrula phase, organogenesis, and hatching. The extruded oocytes showed an average diameter of 1.10 ± 0.10 mm, and after fertilization and hydration of eggs, the average diameter of eggs increased to about 1.90 ± 0.60 mm, characterized by a large perivitelline space that persisted up to embryo development, the double chorion, and the poles (animal and vegetative). Cell division started about 2 minutes after fertilization (AF), resulting in 2, 4, 8 (4 x 2 arrangement of cells), 16 (4 x 4), 32 (4 x 8) and 64 (2 x 4 x 8) cells. Furthermore, the blastula and gastrula stages followed after these cells divisions. The closed blastopore occurred at 11 h 20 min AF; following the development, the organogenetic stages were identified and subdivided respectively in: early segmentation phase and late segmentation phase. In the early segmentation phase, there was the establishment of the embryonic axis, and it was possible to distinguish between the cephalic and caudal regions; somites, and the optic vesicles developed about 20 h AF. Total hatching occurred at 54 h AF, and the larvae average length was 4.30 ± 0.70 mm. Gradual yolk sac reduction was observed during the first two days of larval development. The first feeding occurred at the end of the second day. During the larval phase, cannibalism, heterogeneous larval growth and photophobia were also observed. This information will be important in improving the artificial reproduction protocols of S. parahybae in controlled breeding programs.
Resumo:
Talisin is a seed-storage protein from Talisia esculenta that presents lectin-like activities, as well as proteinase-inhibitor properties. The present study aims to provide new in vitro and in silico biochemical information about this protein, shedding some light on its mechanistic inhibitory strategies. A theoretical three-dimensional structure of Talisin bound to trypsin was constructed in order to determine the relative interaction mode. Since the structure of non-competitive inhibition has not been elucidated, Talisin-trypsin docking was carried out using Hex v5.1, since the structure of non-competitive inhibition has not been elucidated. The predicted non-coincidence of the trypsin binding site is completely different from that previously proposed for Kunitz-type inhibitors, which demonstrate a substitution of an Arg(64) for the Glu(64) residue. Data, therefore, provide more information regarding the mechanisms of non-competitive plant proteinase inhibitors. Bioassays with Talisin also presented a strong insecticide effect on the larval development of Diatraea saccharalis, demonstrating LD50 and ED50 of ca. 2.0% and 1.5%, respectively. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Recent studies on the obligate interaction between fig trees and their pollinating agaonid wasps have focused on population aspects and wasp-seed exploitation at the level of the inflorescence. Detailed studies on larval and gall development are required to more fully understand how resources are exploited and adaptations fine-tuned by each partner in nursery pollination mutualisms. We studied the larval development of the active pollinating fig wasp, Pegoscapus sp., and the galling process of individual flowers within the figs of its monoecious host, Ficus citrifolia, in Brazil. The pollinator development is strongly dependent on flower pollination. Figs entered by pollen-free wasps were in general more likely to abort. Retained, unpollinated figs had both higher larval mortality and a lower number of wasps. Pegoscapus sp. larvae are adapted to plant development, with two contrasting larval feeding strategies proceeding alongside gall development. The first two larval stages behave as ovary parasites. Later larval stages feed on hypertrophied endosperm. This indicates that a successful galling process relies on endosperm, and also reveals why pollination would be a prerequisite for the production of high-quality galls for this Pegoscapus species.
Resumo:
Dry mass (DM) and total ammonia-N (TAN) excretion were determined in embryos, larvae (ZI-ZIX, Z = zoea ), and postlarvae (PL) at 1, 7, and 14 d after metamorphosis (PL1, PL7, and PL14) of Macrobrachium amazonicum. Animals in postmolt-intermolt (A-C) stages were sorted according to their developmental stages, and placed into incubation chambers (similar to 30 mL) for 2 h to quantify TAN excretion. After this period, analyses were carried out using Koroleff`s method for TAN determination. Individual TAN excretion generally increased throughout ontogenetic development and varied from 0.0090 +/- 0.0039 mu g TAN/individual/h in embryo to 1.041 +/- 0.249 mu g TAN/individual/h in PL14. There was no significant difference between embryo-ZIV and ZV-ZIX (P > 0.05), whereas PL1, PL7, and PL14 differed (P < 0.05) from each other. Higher increments in individual ammonia-N excretion were observed between ZIV-ZV, PL1-PL7, and PL7-PL14. Mass-specific excretion rates presented two groups, embryo-ZII (P > 0.05) and ZIII-PL14 (P > 0.05). The lowest value was found in embryo (0.17 +/- 0.07 mu g TAN/mg DM/h) and the maximum values in ZV and PL1 (0.65 +/- 0.25 and 0.64 +/- 0.27 mu g TAN/mg DM/h, respectively). Results indicate that metabolic rate is proportional to the body mass in M. amazonicum, during early life stages. Variations in ammonia excretion during this phase may be associated mainly with body size. Data obtained in the present study may be useful in developing and optimizing rearing techniques of M. amazonicum, such as the proportions between biofilter and rearing tank size, and stocking density in culture tanks or in transport bags.
Resumo:
The taxonomic status of the species Clibanarius sclopetarius (Herbst, 1796) and Clibanarius vittatus (Bosc, 1802), which have sympatric biogeographical distributions restricted to the western Atlantic Ocean, is based only on differences in the colour pattern of the walking legs of adults. Their morphological similarity led to the suggestion that they be synonymised. In order to investigate this hypothesis, we included species of Clibanarius Dana, 1892 in a molecular phylogenetic analysis of partial sequences of the mitochondrial 16S rDNA gene and the COI barcode region. In addition, we combined the molecular results with morphological observations obtained from several samples of these two species. The genetic divergences of the 16S rDNA and COI sequences between C. sclopetarius and C. vittatus ranged from 4.5 to 5.9% and 9.4 to 11.9%, which did not justify their synonymisation. Differences in the telson morphology, chela ornamentation, and coloration of the eyestalks and antennal peduncle provided support for the separation of the two species. Another interesting result was a considerable genetic difference found between populations of C. vittatus from Brazil and the Gulf of Mexico, which may indicate the existence of two homonymous species.
Resumo:
We investigated modulation by ATP, Mg2+, Na+, K+ and NH4 (+) and inhibition by ouabain of (Na+,K+)-ATPase activity in microsomal homogenates of whole zoeae I and decapodid III (formerly zoea IX) and whole-body and gill homogenates of juvenile and adult Amazon River shrimps, . (Na+,K+)-ATPase-specific activity was increased twofold in decapodid III compared to zoea I, juveniles and adults, suggesting an important role in this ontogenetic stage. The apparent affinity for ATP ( (M) = 0.09 +/- A 0.01 mmol L-1) of the decapodid III (Na+,K+)-ATPase, about twofold greater than the other stages, further highlights this relevance. Modulation of (Na+,K+)-ATPase activity by K+ also revealed a threefold greater affinity for K+ ( (0.5) = 0.91 +/- A 0.04 mmol L-1) in decapodid III than in other stages; NH4 (+) had no modulatory effect. The affinity for Na+ ( (0.5) = 13.2 +/- A 0.6 mmol L-1) of zoea I (Na+,K+)-ATPase was fourfold less than other stages. Modulation by Na+, Mg2+ and NH4 (+) obeyed cooperative kinetics, while K+ modulation exhibited Michaelis-Menten behavior. Rates of maximal Mg2+ stimulation of ouabain-insensitive ATPase activity differed in each ontogenetic stage, suggesting that Mg2+-stimulated ATPases other than (Na+,K+)-ATPase are present. Ouabain inhibition suggests that, among the various ATPase activities present in the different stages, Na+-ATPase may be involved in the ontogeny of osmoregulation in larval The NH4 (+)-stimulated, ouabain-insensitive ATPase activity seen in zoea I and decapodid III may reflect a stage-specific means of ammonia excretion since functional gills are absent in the early larval stages.
Resumo:
Approximately 370 brachyuran species have so far been recorded from the Brazilian coast, 123 of which have had their larval stages fully or partially described. The pictorial guide allows the identification of the first zoea of 110 species. The remaining 13 species with known larval stages are treated to the genus level because of difficulties in the morphological differentiation of closely related species.
Resumo:
Plant extracts represent a great source of molecules, with insecticidal activity, which are used for pest control in several crop production systems. This work aimed to evaluate the toxicity of an aqueous extract of leaves of castor bean against larvae of Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) in search for different classes of molecules with insecticidal activities by using in vitro assays. The effects of the castor bean leaf extract on the food utilization, development, and survival of S. frugiperda larvae was evaluated by feeding the larvae an artificial diet supplemented with different concentrations of the extract (0%, 1%, 2.5%, 5%, and 10% w/v). The effects observed were dose-dependent, and the highest concentration evaluated (10% w/v) was the one the most affected food utilization by altering the nutritional indices, as well as larval weight gain, development time, and survivorship. In vitro assays to detect saponins, lectins, and trypsin inhibitors in the castor bean leaf extract were performed, but only trypsin inhibitors were detected. No preference for the diet source was detected in S. frugiperda by feeding the larvae in choice experiments with diets containing different concentrations of the castor bean extract tested. The data obtained indicate the existence of a potential molecule in the tested extract of castor bean to be used as an alternative insecticide to be integrated in the management of S. frugiperda.
Resumo:
Based on the hypothesis that reproduction is a continuous process in tropical habitats, we analysed reproductive periodicity and egg production in the callianassid ghost shrimp Lepidophthalmus bocourti, one of the most common species in mangrove systems along the Pacific coast of Central America. During one year (May 2008 to April 2009), individuals of L. bocourti (N = 499) were collected nearshore Gulf of Nicoya, Pacific coast of Costa Rica. Observations were made on presence or absence of incubated embryos, and gonad activity of females was analysed as gonadosomatic index (GSI). Our results revealed that L. bocourti has a marked seasonal breeding period, which contradicts previous reports regarding coastal marine decapods from the tropics. Ovigerous females were found only from June to August, while high GSI values were obtained from March to July. The increase of GSI and appearance of ovigerous females were associated with a concomitant decrease of salinity, but not with temperature. We assume that reproduction of L. bocourti is adapted to local changes of environmental conditions, and that a decrease in salinity during rainy season may serve as a triggering factor for ovarian development. Compared to other ghost shrimps, L. bocourti produced on average more (2002 +/- 1365) and smaller (0.87 +/- 0.109 mm) eggs, which seems to suggest that this species does not have an abbreviated larval development as reported for other species of genus. The deviation from the generalization of constant reproduction in the tropics for shallow water marine invertebrates and its probable cause are adequately discussed.
Resumo:
Diatraea saccharalis, is a major sugarcane pest, causing damage to the stalks of sugarcane plants. In this study, a trypsin inhibitor (ApTI) was purified from Adenanthera pavonina seeds and was tested for its insect growth regulatory effect. ApTI showed a dose-dependent effect on average larval weight and survival. 0.1% ApTI produced approximately 67% and 50% decreases in weight and survival larval, respectively. The results from dietary utilization experiments with D. saccharalis larvae showed a reduction in the efficiency of conversion of ingested food and digested food, and an increase in approximate digestibility and metabolic cost. The level of trypsin was significantly decreased (ca. 55%) in the midgut of larvae reared on a diet containing 0.05% ApTI and the trypsin activity in ApTI-fed larvae demonstrated sensitivity to ApTI. The action of ApTI on the development of D. saccharalis larvae shows that this protein may have great toxic potential. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Insect storage proteins accumulate at high levels during larval development of holometabolous insects. During metamorphosis they are degraded, supplying energy and amino acids for the completion of adult development. The genome of Culex quinquefasciatus contains eleven storage protein-coding genes. Their transcripts are more abundant in larvae than in pupae and in adults. In fact, only four of these genes are transcribed in adults, two of which in blood-fed adult females but not in adult males. Transcripts corresponding to all Cx. quinquefasciatus storage proteins were detected by RT-PCR, while mass spectrometric analysis of larval and pupal proteins identified all storage proteins with the exception of one encoded by Cq LSP1.8. Our results indicate that the identified Cx. quinquefasciatus storage protein-coding genes are candidates for identifying regulatory sequences for the development of molecular tools for vector control
Resumo:
The difference in phenotypes of queens and workers is a hallmark of the highly eusocial insects. The caste dimorphism is often described as a switch-controlled polyphenism, in which environmental conditions decide an individual's caste. Using theoretical modeling and empirical data from honeybees, we show that there is no discrete larval developmental switch. Instead, a combination of larval developmental plasticity and nurse worker feeding behavior make up a colony-level social and physiological system that regulates development and produces the caste dimorphism. Discrete queen and worker phenotypes are the result of discrete feeding regimes imposed by nurses, whereas a range of experimental feeding regimes produces a continuous range of phenotypes. Worker ovariole numbers are reduced through feeding-regime-mediated reduction in juvenile hormone titers, involving reduced sugar in the larval food. Based on the mechanisms identified in our analysis, we propose a scenario of the evolutionary history of honeybee development and feeding regimes.
Resumo:
The present study describes different preimaginal stages of Trypoxylon rogenhoferi examined by Scanning Electron Microscopy (SEM) and compares the results with observations on closely related species. Some notes on the nesting habits of this species, including their spider prey, nest parasites, and development time are provided. In short, T. rogenhoferi proved quite similar to the previous report on T. albitarse although SEM images are rarely presented in such descriptions. In fact the present study emphasized the importance of SEM images to describe fine morphological details that can be useful characters for taxonomic and phylogenetic studies. Images of some earlier development stages (first and second larval instar and egg) are presented for the first time, and compared with the few available data from other hymenopterans.
Resumo:
Tridacnid clams are conspicuous inhabitants of Indo-Pacific coral reefs and are traded and cultivated for the aquarium and food industries. In the present study, daily growth rates of larvae of the giant clam Tridacna crocea were determined in the laboratory during the first week of life. Adults were induced to spawn via intra-gonadal serotonin injection through the byssal orifice. After spawning oocytes were collected, fertilized and kept in 3 L glass beakers and raceways treated with antibiotics to avoid culture contamination. Larvae were fed twice with the microalga Isochrysis galbana and zooxanthellae were also offered twice during the veliger stage (days 4 and 6). Larval length was measured using a digitizing tablet coupled to a microcomputer. Larval mortality was exponential during the first 48 hours of life declining significantly afterwards. Mean growth rate was 11.3 mu m day-1, increasing after addition of symbionts to 18.0 mu m day-1. Survival increased to ca. 75% after the addition of zooxanthellae. The results describe the growth curve for T. crocea larvae and suggest that the acquisition of symbionts by larvae may be useful for larval growth and survival even before larvae have attained metamorphosis.