1 resultado para Landslide mapping
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
In the city of Sao Paulo, where about 11 million people live, landslides and flooding occur frequently, especially during the summer. These landslides cause the destruction of houses and urban equipment, economic damage, and the loss of lives. The number of areas threatened by landslides has been increasing each year. The objective of this article is to analyze the probability of risk and susceptibility to shallow landslides in the Limoeiro River basin, which is located at the head of the Aricanduva River basin, one of the main hydrographic basins in the city of Sao Paulo. To map areas of risk, we created a cadastral survey form to evaluate landslide risk in the field. Risk was categorized into four levels based on natural and anthropogenic factors: R1 (low risk), R2 (average risk), R3 (high risk), and R4 (very high risk). To analyze susceptibility to shallow landslides, we used the SHALSTAB (Shallow Landsliding Stability) mathematical model and calculated the Distribution Frequency (DF) of the susceptibility classes for the entire basin. Finally, we performed a joint analysis of the average Risk Concentration (RC) and Risk Potential (RP). We mapped 14 risk sectors containing approximately 685 at-risk homes, more than half of which presented a high (R3) or very high (R4) probability of risk to the population. In the susceptibility map, 41% of the area was classified as stable and 20% as unconditionally unstable. Although the latter category accounted a smaller proportion of the total area, it contained a concentration (RC) of 41% of the mapped risk areas with a risk potential (RP) of 12%. We found that the locations of areas predicted to be unstable by the model coincided with the risk areas mapped in the field. This combination of methods can be applied to evaluate the risk of shallow landslides in densely populated areas and can assist public managers in defining areas that are unstable and inappropriate for occupation. (C) 2012 Elsevier B.V. All rights reserved.