12 resultados para Lagrange multipliers
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems
Resumo:
Augmented Lagrangian methods are effective tools for solving large-scale nonlinear programming problems. At each outer iteration, a minimization subproblem with simple constraints, whose objective function depends on updated Lagrange multipliers and penalty parameters, is approximately solved. When the penalty parameter becomes very large, solving the subproblem becomes difficult; therefore, the effectiveness of this approach is associated with the boundedness of the penalty parameters. In this paper, it is proved that under more natural assumptions than the ones employed until now, penalty parameters are bounded. For proving the new boundedness result, the original algorithm has been slightly modified. Numerical consequences of the modifications are discussed and computational experiments are presented.
Resumo:
In this study is presented an economic optimization method to design telescope irrigation laterals (multidiameter) with regular spaced outlets. The proposed analytical hydraulic solution was validated by means of a pipeline composed of three different diameters. The minimum acquisition cost of the telescope pipeline was determined by an ideal arrangement of lengths and respective diameters for each one of the three segments. The mathematical optimization method based on the Lagrange multipliers provides a strategy for finding the maximum or minimum of a function subject to certain constraints. In this case, the objective function describes the acquisition cost of pipes, and the constraints are determined from hydraulic parameters as length of irrigation laterals and total head loss permitted. The developed analytical solution provides the ideal combination of each pipe segment length and respective diameter, resulting in a decreased of the acquisition cost.
Resumo:
Introduction C-reactive protein (CRP) levels rise during inflammatory processes and have been ordered for rheumatic disease follow-up since the 1950s. The number of tests ordered in the emergency setting has increased, but without evident improvement in medical care quality. Objective To determine the pattern of CRP determinations in the emergency department (ED) of a university hospital in Sao Paulo, Brazil, and to evaluate the effect of an intervention with staff and students about the best use of the test in the ED. Methods Data regarding CRP testing requests, related diagnoses and the number of monthly consultations in the hospital ED were analysed before and after the intervention. Because of an increase in CRP measurement requests from 2007 to 2009, the author started discussing the role of CRP determinations in the medical decision-making process in early 2010. Staff and faculty members openly discussed the pattern of requests in the hospital and related current medical literature. During 2010, the medical staff worked as multipliers to change the behaviour of new students and residents. The results of the first 4 months after the intervention were presented at another general meeting in July 2010. Results From 2007 to 2009, there were 11 786 CRP measurement requests with a clear exponential trend. After the intervention, during the calendar year 2010, there was a 48% reduction in adjusted annual CRP requests. Pneumonia, fever and urinary tract infections were the most common reasons for CRP requests. Discussion Inexpensive, well-directed, interactive educational interventions may affect professional behaviour and curb rates of laboratory tests.
Resumo:
The present paper aims at contributing to a discussion, opened by several authors, on the proper equation of motion that governs the vertical collapse of buildings. The most striking and tragic example is that of the World Trade Center Twin Towers, in New York City, about 10 years ago. This is a very complex problem and, besides dynamics, the analysis involves several areas of knowledge in mechanics, such as structural engineering, materials sciences, and thermodynamics, among others. Therefore, the goal of this work is far from claiming to deal with the problem in its completeness, leaving aside discussions about the modeling of the resistive load to collapse, for example. However, the following analysis, restricted to the study of motion, shows that the problem in question holds great similarity to the classic falling-chain problem, very much addressed in a number of different versions as the pioneering one, by von Buquoy or the one by Cayley. Following previous works, a simple single-degree-of-freedom model was readdressed and conceptually discussed. The form of Lagrange's equation, which leads to a proper equation of motion for the collapsing building, is a general and extended dissipative form, which is proper for systems with mass varying explicitly with position. The additional dissipative generalized force term, which was present in the extended form of the Lagrange equation, was shown to be derivable from a Rayleigh-like energy function. DOI: 10.1061/(ASCE)EM.1943-7889.0000453. (C) 2012 American Society of Civil Engineers.
Resumo:
The use of antiretroviral therapy has proven to be remarkably effective in controlling the progression of human immunodeficiency virus (HIV) infection and prolonging patient's survival. Therapy however may fail and therefore these benefits can be compromised by the emergence of HIV strains that are resistant to the therapy. In view of these facts, the question of finding the reason for which drug-resistant strains emerge during therapy has become a worldwide problem of great interest. This paper presents a deterministic HIV-1 model to examine the mechanisms underlying the emergence of drug-resistance during therapy. The aim of this study is to determine whether, and how fast, antiretroviral therapy may determine the emergence of drug resistance by calculating the basic reproductive numbers. The existence, feasibility and local stability of the equilibriums are also analyzed. By performing numerical simulations we show that Hopf bifurcation may occur. The model suggests that the individuals with drug-resistant infection may play an important role in the epidemic of HIV. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The purpose of this study is to present a position based tetrahedral finite element method of any order to accurately predict the mechanical behavior of solids constituted by functionally graded elastic materials and subjected to large displacements. The application of high-order elements makes it possible to overcome the volumetric and shear locking that appears in usual homogeneous isotropic situations or even in non-homogeneous cases developing small or large displacements. The use of parallel processing to improve the computational efficiency, allows employing high-order elements instead of low-order ones with reduced integration techniques or strain enhancements. The Green-Lagrange strain is adopted and the constitutive relation is the functionally graded Saint Venant-Kirchhoff law. The equilibrium is achieved by the minimum total potential energy principle. Examples of large displacement problems are presented and results confirm the locking free behavior of high-order elements for non-homogeneous materials. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We construct a consistent theory of a quantum massive Weyl field. We start with the formulation of the classical field theory approach for the description of massive Weyl fields. It is demonstrated that the standard Lagrange formalism cannot be applied for the studies of massive first-quantized Weyl spinors. Nevertheless we show that the classical field theory description of massive Weyl fields can be implemented in frames of the Hamilton formalism or using the extended Lagrange formalism. Then we carry out a canonical quantization of the system. The independent ways for the quantization of a massive Weyl field are discussed. We also compare our results with the previous approaches for the treatment of massive Weyl spinors. Finally the new interpretation of the Majorana condition is proposed.
Resumo:
A complete census of planetary systems around a volume-limited sample of solar-type stars (FGK dwarfs) in the Solar neighborhood (d a parts per thousand currency signaEuro parts per thousand 15 pc) with uniform sensitivity down to Earth-mass planets within their Habitable Zones out to several AUs would be a major milestone in extrasolar planets astrophysics. This fundamental goal can be achieved with a mission concept such as NEAT-the Nearby Earth Astrometric Telescope. NEAT is designed to carry out space-borne extremely-high-precision astrometric measurements at the 0.05 mu as (1 sigma) accuracy level, sufficient to detect dynamical effects due to orbiting planets of mass even lower than Earth's around the nearest stars. Such a survey mission would provide the actual planetary masses and the full orbital geometry for all the components of the detected planetary systems down to the Earth-mass limit. The NEAT performance limits can be achieved by carrying out differential astrometry between the targets and a set of suitable reference stars in the field. The NEAT instrument design consists of an off-axis parabola single-mirror telescope (D = 1 m), a detector with a large field of view located 40 m away from the telescope and made of 8 small movable CCDs located around a fixed central CCD, and an interferometric calibration system monitoring dynamical Young's fringes originating from metrology fibers located at the primary mirror. The mission profile is driven by the fact that the two main modules of the payload, the telescope and the focal plane, must be located 40 m away leading to the choice of a formation flying option as the reference mission, and of a deployable boom option as an alternative choice. The proposed mission architecture relies on the use of two satellites, of about 700 kg each, operating at L2 for 5 years, flying in formation and offering a capability of more than 20,000 reconfigurations. The two satellites will be launched in a stacked configuration using a Soyuz ST launch vehicle. The NEAT primary science program will encompass an astrometric survey of our 200 closest F-, G- and K-type stellar neighbors, with an average of 50 visits each distributed over the nominal mission duration. The main survey operation will use approximately 70% of the mission lifetime. The remaining 30% of NEAT observing time might be allocated, for example, to improve the characterization of the architecture of selected planetary systems around nearby targets of specific interest (low-mass stars, young stars, etc.) discovered by Gaia, ground-based high-precision radial-velocity surveys, and other programs. With its exquisite, surgical astrometric precision, NEAT holds the promise to provide the first thorough census for Earth-mass planets around stars in the immediate vicinity of our Sun.
Resumo:
A decision analytical model is presented and analysed to assess the effectiveness and cost-effectiveness of routine vaccination against varicella and herpes-zoster, or shingles. These diseases have as common aetiological agent the varicella-zoster virus (VZV). Zoster can more likely occur in aged people with declining cell-mediated immunity. The general concern is that universal varicella vaccination might lead to more cases of zoster: with more vaccinated children exposure of the general population to varicella infectives become smaller and thus a larger proportion of older people will have weaker immunity to VZV, leading to more cases of reactivation of zoster. Our compartment model shows that only two possible equilibria exist, one without varicella and the other one where varicella arid zoster both thrive. Threshold quantities to distinguish these cases are derived. Cost estimates on a possible herd vaccination program are discussed indicating a possible tradeoff choice.
Resumo:
The stability of two recently developed pressure spaces has been assessed numerically: The space proposed by Ausas et al. [R.F. Ausas, F.S. Sousa, G.C. Buscaglia, An improved finite element space for discontinuous pressures, Comput. Methods Appl. Mech. Engrg. 199 (2010) 1019-1031], which is capable of representing discontinuous pressures, and the space proposed by Coppola-Owen and Codina [A.H. Coppola-Owen, R. Codina, Improving Eulerian two-phase flow finite element approximation with discontinuous gradient pressure shape functions, Int. J. Numer. Methods Fluids, 49 (2005) 1287-1304], which can represent discontinuities in pressure gradients. We assess the stability of these spaces by numerically computing the inf-sup constants of several meshes. The inf-sup constant results as the solution of a generalized eigenvalue problems. Both spaces are in this way confirmed to be stable in their original form. An application of the same numerical assessment tool to the stabilized equal-order P-1/P-1 formulation is then reported. An interesting finding is that the stabilization coefficient can be safely set to zero in an arbitrary band of elements without compromising the formulation's stability. An analogous result is also reported for the mini-element P-1(+)/P-1 when the velocity bubbles are removed in an arbitrary band of elements. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Hermite interpolation is increasingly showing to be a powerful numerical solution tool, as applied to different kinds of second order boundary value problems. In this work we present two Hermite finite element methods to solve viscous incompressible flows problems, in both two- and three-dimension space. In the two-dimensional case we use the Zienkiewicz triangle to represent the velocity field, and in the three-dimensional case an extension of this element to tetrahedra, still called a Zienkiewicz element. Taking as a model the Stokes system, the pressure is approximated with continuous functions, either piecewise linear or piecewise quadratic, according to the version of the Zienkiewicz element in use, that is, with either incomplete or complete cubics. The methods employ both the standard Galerkin or the Petrov–Galerkin formulation first proposed in Hughes et al. (1986) [18], based on the addition of a balance of force term. A priori error analyses point to optimal convergence rates for the PG approach, and for the Galerkin formulation too, at least in some particular cases. From the point of view of both accuracy and the global number of degrees of freedom, the new methods are shown to have a favorable cost-benefit ratio, as compared to velocity Lagrange finite elements of the same order, especially if the Galerkin approach is employed.
Resumo:
We propose a new Skyrme-like model with fields taking values on the sphere S3 or, equivalently, on the group SU(2). The action of the model contains a quadratic kinetic term plus a quartic term which is the same as that of the Skyrme-Faddeev model. The novelty of the model is that it possess a first order Bogomolny type equation whose solutions automatically satisfy the second order Euler-Lagrange equations. It also possesses a lower bound on the static energy which is saturated by the Bogomolny solutions. Such Bogomolny equation is equivalent to the so-called force free equation used in plasma and solar Physics, and which possesses large classes of solutions. An old result due to Chandrasekhar prevents the existence of finite energy solutions for the force free equation on the entire three- dimensional space R3. We construct new exact finite energy solutions to the Bogomolny equations for the case where the space is the three-sphere S3, using toroidal like coordinates.