12 resultados para LCA, PHB, DMC, Cloroformio, Bioplastiche
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Poly(3-hydroxybutyrate) (PHB) biosynthesis from soybean oil by Cupriavidus necator was studied using a bench scale bioreactor. The highest cell concentration (83 g l(-1)) was achieved using soybean oil at 40 g l(-1) and a pulse of the same concentration. The PHB content was 81% (w/w), PHB productivity was 2.5 g l(-1) h(-1), and the calculated Y-p/s value was 0.85 g g(-1). Growth limitation and the onset of PHB biosynthesis took place due to exhaustion of P, and probably also Cu, Ca, and Fe.
Resumo:
Sao Paulo state (Brazil) has one of the most overpopulated coastal zones in South America, where previous studies have already detected sediment and water contamination. However, biological-based monitoring considering signals of xenobiotic exposure and effects are scarce. The present study employed a battery of biomarkers under field conditions to assess the environmental quality of this coastal zone. For this purpose, the activity of CYP 450, antioxidant enzymes, DNA damage, lipid peroxidation and lysosomal membrane were analysed in caged mussels and integrated using Factorial Analysis. A representation of estimated factor scores was performed in order to confirm the factor descriptions characterizing the studied areas. Biomarker responses indicated signals of mussels` impaired health during the monitoring, which pointed to the impact of different sources of contaminants in the water quality and identified critical areas. This integrated approach produced a rapid, sensitive and cost-effective assessment, which could be incorporated as a descriptor of environmental status in future coastal zones biomonitoring. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
We aimed to develop site-specific sediment quality guidelines (SQGs) for two estuarine and port zones in Southeastern Brazil (Santos Estuarine System and Paranagua Estuarine System) and three in Southern Spain (Ria of Huelva, Bay of Cadiz, and Bay of Algeciras), and compare these values against national and traditionally used international benchmark values. Site-specific SQGs were derived based on sediment physical-chemical, toxicological, and benthic community data integrated through multivariate analysis. This technique allowed the identification of chemicals of concern and the establishment of effects range correlatively to individual concentrations of contaminants for each site of study. The results revealed that sediments from Santos channel, as well as inner portions of the SES, are considered highly polluted (exceeding SQGs-high) by metals, PAHs and PCBs. High pollution by PAHs and some metals was found in Sao Vicente channel. In PES, sediments from inner portions (proximities of the Ponta do Mix port`s terminal and the Port of Paranagua) are highly polluted by metals and PAHs, including one zone inside the limits of an environmental protection area. In Gulf of Cadiz, SQGs exceedences were found in Ria of Huelva (all analysed metals and PAHs), in the surroundings of the Port of CAdiz (Bay of CAdiz) (metals), and in Bay of Algeciras (Ni and PAHs). The site-specific SQGs derived in this study are more restricted than national SQGs applied in Brazil and Spain, as well as international guidelines. This finding confirms the importance of the development of site-specific SQGs to support the characterisation of sediments and dredged material. The use of the same methodology to derive SQGs in Brazilian and Spanish port zones confirmed the applicability of this technique with an international scope and provided a harmonised methodology for site-specific SQGs derivation. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The construction industry is one of the greatest sources of pollution because of the high level of energy consumption during its life cycle. In addition to using energy while constructing a building, several systems also use power while the building is operating, especially the air-conditioning system. Energy consumption for this system is related, among other issues, to external air temperature and the required internal temperature of the building. The facades are elements which present the highest level of ambient heat transfer from the outside to the inside of tall buildings. Thus, the type of facade has an influence on energy consumption during the building life cycle and, consequently, contributes to buildings' CO2 emissions, because these emissions are directly connected to energy consumption. Therefore, the aim is to help develop a methodology for evaluating CO2 emissions generated during the life cycle of office building facades. The results, based on the parameters used in this study, show that facades using structural glazing and uncolored glass emit the most CO2 throughout their life cycle, followed by brick facades covered with compound aluminum panels or ACM (Aluminum Composite Material), facades using structural glazing and reflective glass and brick facades with plaster coating. On the other hand, the typology of facade that emits less CO2 is brickwork and mortar because its thermal barrier is better than structural glazing facade and materials used to produce this facade are better than brickwork and ACM. Finally, an uncertainty analysis was conducted to verify the accuracy of the results attained. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
This study evaluated color change, stability, and tooth sensitivity in patients submitted to different bleaching techniques. Material and methods: In this study, 48 patients were divided into five groups. A half-mouth design was conducted to compare two in-office bleaching bleaching techniques (with and without light activation): G1: 35% hydrogen peroxide (HP) (Lase Peroxide - DMC Equipments, Sao Carlos, SP, Brazil) + hybrid light (HL) (LED/Diode Laser, Whitening Lase II DMC Equipments, Sao Carlos, SP, Brazil); G2: 35% HP; G3: 38% HP (X-traBoost - Ultradent, South Jordan UT, USA) + HL; G4: 38% HP; and G5: 15% carbamide peroxide (CP) (Opalescence PF - Ultradent, South Jordan UT, USA). For G1 and G3, HP was applied on the enamel surface for 3 consecutive applications activated by HL. Each application included 3x3' HL activations with 1' between each interval; for G2 and G4, HP was applied 3x15' with 15' between intervals; and for G5, 15% CP was applied for 120'/10 days at home. A spectrophotometer was used to measure color change before the treatment and after 24 h, 1 week, 1, 6, 12, 18 and 24 months. A VAS questionnaire was used to evaluate tooth sensitivity before the treatment, immediately following treatment, 24 h after and finally 1 week after. Results: Statistical analysis did not reveal any significant differences between in-office bleaching with or without HL activation related to effectiveness; nevertheless the time required was less with HL. Statistical differences were observed between the result after 24 h, 1 week and 1, 6, 12, 18 and 24 months (integroup). Immediately, in-office bleaching increased tooth sensitivity. The groups activated with HL required less application time with gel. Conclusion: All techniques and bleaching agents used were effective and demonstrated similar behaviors.
Resumo:
This study aimed to provide the first biomonitoring integrating biomarkers and bioaccumulation data in Sao Paulo coast, Brazil and, for this purpose, a battery of biomarkers of defense mechanisms was analyzed and linked to contaminants' body burden in a weigh-of-evidence approach. The brown mussel Perna perna was selected to be transplanted from a farming area (Caraguatatuba) to four possibly polluted sites: Engenho D'Agua, DTCS (Dutos e Terminais do Centro-Oeste de Sao Paulo) oil terminal (Sao Sebastiao zone), Palmas Island, and Itaipu (It; Santos Bay zone). After 3 months of exposure in each season, mussels were recollected and the cytochrome P4501A (CYP1A)- and CYP3A-like activities, glutathione-S-transferase and antioxidants enzymes (catalase, glutathione peroxidase, and glutathione reductase) were analyzed in gills. The concentrations of polycyclic aromatic hydrocarbons, linear alkylbenzenes, and nonessential metals (Cr, Cd, Pb, and Hg) in whole tissue were also analyzed and data were linked to biomarkers' responses by multivariate analysis (principal component analysisfactor analysis). A representation of estimated factor scores was performed to confirm the factor descriptions and to characterize the studied stations. Biomarkers exhibited most significant alterations all year long in mussels transplanted to It, located at Santos Bay zone, where bioaccumulation of organic and inorganic compounds was detected. This integrated approach using transplanted mussels showed satisfactory results, pointing out differences between sites, seasons, and critical areas, which could be related to land-based contaminants' sources. The influence of natural factors and other contaminants (e.g., pharmaceuticals) on biomarkers' responses are also discussed.
Resumo:
Using fixed node diffusion quantum Monte Carlo (FN-DMC) simulations and density functional theory (DFT) within the generalized gradient approximations, we calculate the total energies of the relaxed and unrelaxed neutral, cationic, and anionic aluminum clusters, Al-n (n = 1-13). From the obtained total energies, we extract the ionization potential and electron detachment energy and compare with previous theoretical and experimental results. Our results for the electronic properties from both the FN-DMC and DFT calculations are in reasonably good agreement with the available experimental data. A comparison between the FN-DMC and DFT results reveals that their differences are a few tenths of electron volt for both the ionization potential and the electron detachment energy. We also observe two distinct behaviors in the electron correlation contribution to the total energies from smaller to larger clusters, which could be assigned to the structural transition of the clusters from planar to three-dimensional occurring at n = 4 to 5.
Resumo:
In this work poly(hydroxybutyrate/poly(vinyl butyral)- co-(vinyl alcohol)-co(vinyl acetate) (or ethylene propylene diene monomer rubber) blends were prepared by conventional processing techniques (extrusion and injection moulding). A droplet type morphology was obtained for P(3HB)/PVB blends whereas P(3HB)/EPDM blends presented some extent of co-continuous morphology. In addition, rubbery domains were much smaller in the case of PVB. These differences in morphology are discussed taking into account solubility parameters and rheological behaviours of each component. For both blends, the increase of elastomer ratio led to a decrease of Young's modulus but an increase in elongation at break and impact strength. The latter increased more in the case of P(3HB)/EPDM blends although the rubbery domains were larger. These results are explained in the light of the glass transition of the rubber and the presence of plasticizer in the case of PVB. The addition of elastomer also resulted in an increase of P(3HB) biodegradation rate, especially in the case of EPDM. It is assumed that, in this case, the size and morphology of the rubbery domains induce a geometrical modification of the erosion front which leads to an increase of the interface between P(3HB) phase and the degradation medium and consequently to an apparently faster biodegradation kinetics of PHB/rubber blends. Copyright (C) 2011 Society of Chemical Industry
Resumo:
Blending polypropylene (PP) with biodegradable poly(3-hydroxybutyrate) (PHB) can be a nice alternative to minimize the disposal problem of PP and the intrinsic brittleness that restricts PHB applications. However, to achieve acceptable engineering properties, the blend needs to be compatibilized because of the immiscibility between PP and PHB. In this work, PP/PHB blends were prepared with different types of copolymers as possible compatibilizers: poly(propylene-g-maleic anhydride) (PPMAH), poly (ethylene-co-methyl acrylate) [P(EMA)], poly(ethylene-co-glycidyl methacrylate) [P(EGMA)], and poly(ethylene-co-methyl acrylate-co-glycidyl methacrylate) [P(EMAGMA)]. The effect of each copolymer on the morphology and mechanical properties of the blends was investigated. The results show that the compatibilizers efficiency decreased in this order: P(EMAGMA) > P(EMA) > P(EGMA) > PP-MAH; we explained this by taking into consideration the affinity degree of the compatibilizers with the PP matrix, the compatibilizers properties, and their ability to provide physical and/or reactive compatibilization with PHB. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci 123: 3511-3519, 2012
Resumo:
Five microbial lipase preparations from several sources were immobilized by hydrophobic adsorption on small or large poly-hydroxybutyrate (PHB) beads and the effect of the support particle size on the biocatalyst activity was assessed in the hydrolysis of olive oil, esterification of butyric acid with butanol and transesterification of babassu oil (Orbignya sp.) with ethanol. The catalytic activity of the immobilized lipases in both olive oil hydrolysis and biodiesel synthesis was influenced by the particle size of PHB and lipase source. In the esterification reaction such influence was not observed. Geobacillus thermocatenulatus lipase (BTL2) was considered to be inadequate to catalyze biodiesel synthesis, but displayed high esterification activity. Butyl butyrate synthesis catalyzed by BTL2 immobilized on small PHB beads gave the highest yield (approximate to 90 mmol L-1). In biodiesel synthesis, the catalytic activity of the immobilized lipases was significantly increased in comparison to the free lipases. Full conversion of babassu oil into ethyl esters was achieved at 72 h in the presence of Pseudozyma antarctica type B (CALB), Thermomyces lanuginosus lipase (Lipex (R) 100L) immobilized on either small or large PHB beads and Pseudomonas fluorescens (PFL) immobilized on large PHB beads. The latter preparation presented the highest productivity (40.9 mg of ethyl esters mg(-1) immobilized protein h(-1)). (C) 2012 Elsevier B.V. All rights reserved.
Minimal alterations on the enamel surface by micro-abrasion: in vitro roughness and wear assessments
Resumo:
Objective: To evaluate the in vitro changes on the enamel surface after a micro-abrasion treatment promoted by different products. Material and Methods: Fifty (50) fragments of bovine enamel (15 mm × 5 mm) were randomly assigned to five groups (n=10) according to the product utilized: G1 (control)= silicone polisher (TDV), G2= 37% phosphoric acid (3M/ESPE) + pumice stone (SS White), G3= Micropol (DMC Equipment), G4= Opalustre (Ultradent) and G5= Whiteness RM (FGM Dental Products). Roughness and wear were the responsible variables used to analyze these surfaces in four stages: baseline, 60 s and 120 s after the micro-abrasion and after polishing, using a Hommel Tester T1000 device. After the tests, a normal distribution of data was verified, with repeated ANOVA analyses (p?0.05) which were used to compare each product in different stages. One-way ANOVA and Tukey tests were applied for individual comparisons between the products in each stage (p?0.05). Results: Means and standard deviations of roughness and wear (µm) after all the promoted stages were: G1=7.26(1.81)/13.16(2.67), G2=2.02(0.62)/37.44(3.33), G3=1.81(0.91)/34.93(6.92), G4=1.92(0.29)/38.42(0.65) and G5=1.98(0.53)/33.45(2.66). At 60 seconds, all products tended to produce less surface roughness with a variable gradual decrease over time. After polishing, there were no statistically significant differences between the groups, except for G1. Independent of the product utilized, the enamel wear occurred after the micro-abrasion. Conclusions: In this in vitro study, enamel micro-abrasion presented itself as a conservative approach, regardless of the type of the paste compound utilized. These products promoted minor roughness alterations and minimal wear. The use of phosphoric acid and pumice stone showed similar results to commercial products for the micro-abrasion with regard to the surface roughness and wear.
Resumo:
In this work, the effect of blend composition and previous photodegradation on the biodegradation of polypropylene/ poly(3-hydroxybutyrate) (PP/PHB) blends was studied. The individual polymers and blends with or without the addition of poly(ethylene-co-methyl acrylate- co-glycidyl methacrylate) [P(E-MA-GMA)] as a compatibilizer (in the case of 80/20 blend) were exposed to UV light for 4 weeks and their biodegradation was evaluated. The biodegradation of PHB phase within the blends was hindered as PHB was the dispersed phase and PP fibrous particles were observed at the surface of the blend samples after biodegradation. Previous photodegradation lessened PHB biodegradation but enhanced the biodegradation of PP and the blends within the biodegradation time studied. Photodegradation resulted in cracks at the surface of PP and the blends, which probably facilitated the biotic reactions due to an easier access of the enzymes to deeper polymer layers. It also resulted in a decrease of molecular weight of PP phase and formation of carbonyl and hydroxyl groups which were consumed during biodegradation. Size exclusion chromatography analysis revealed that only the short chains of PP were consumed during biodegradation.