10 resultados para LC-APCI-MS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This paper describes a rapid method for arsenic (As) speciation by LC-ICP-MS in several types of food samples. Prior to analysis, samples were milled and the As species extracted from biological tissues by sonication in only 2 min with a solution containing MeOH (10%, v/v) plus HNO3 (2%, v/v). As species were separated by LC using an anion exchange column. Method detection limits for AsB, As3+,DMA, MMA and As5+ were 1.3, 0.9, 0.6, 0.7 and 0.8 ng g(-1), respectively. Method accuracy and precision were traceable to Certified Reference Materials SRM1577 bovine liver from the National Institute of Standards and Technology, CE278 mussel tissue from the Institute of Reference Materials and Measurements and DOLT-3 dogfish liver tissue and DORM-3 fish protein from the National Research Council of Canada. Finally, the method was applied to speciate As in food samples (egg, fish muscle, beef and chicken) purchased in Brazilian markets.
Resumo:
Controlling the dissemination of malaria requires the development of new drugs against its etiological agent, a protozoan of the Plasmodium genus. Angiotensin II and its analog peptides exhibit activity against the development of immature and mature sporozoites of Plasmodium gallinaceum. In this study, we report the synthesis and characterization of angiotensin II linear and cyclic analogs with anti-plasmodium activity. The peptides were synthesized by a conventional solid-phase method on Merrifield's resin using the t-Boc strategy, purified by RP-HPLC and characterized by liquid chromatography/ESI (+) MS (LC-ESI(+)/MS), amino acid analysis, and capillary electrophoresis. Anti-plasmodium activity was measured in vitro by fluorescence microscopy using propidium iodine uptake as an indicator of cellular damage. The activities of the linear and cyclic peptides are not significantly different (p < 0.05). Kinetics studies indicate that the effects of these peptides on plasmodium viability overtime exhibit a sigmoidal profile and that the system stabilizes after a period of 1 h for all peptides examined. The results were rationalized by partial least-square analysis, assessing the position-wise contribution of each amino acid. The highest contribution of polar amino acids and a Lys residue proximal to the C-terminus, as well as that of hydrophobic amino acids in the N-terminus, suggests that the mechanism underlying the anti-malarial activity of these peptides is attributed to its amphiphilic character.
Resumo:
This study describes the enantioselective analysis of unbound and total concentrations of tramadol and its main metabolites O-desmethyltramadol (M1) and N-desmethyltramadol (M2) in human plasma. Sample preparation was preceded by an ultrafiltration step to separate the unbound drug. Both the ultrafiltrate and plasma samples were submitted to liquid/liquid extraction with methyl t-butyl ether. Separation was performed on a Chiralpak (R) AD column and tandem mass spectrometry consisting of an electrospray ionization source, positive ion mode and multiple reaction monitoring was used as the detection system. Linearity was observed in the following ranges: 0.2-600 and 0.5-250 ng/mL for analysis of total and unbound concentrations of the tramadol enantiomers, respectively, and 0.1-300 and 0.25-125 ng/mL for total and unbound concentrations of the M1 and M2 enantiomers, respectively. The lower limits of quantitation were 0.2 and 0.5 ng/mL for analysis of total and unbound concentration of each tramadol enantiomer, respectively, and 0.1 and 0.25 ng/mL for total and unbound concentrations of M1 and M2 enantiomers, respectively. Intra- and interassay reproducibility and inaccuracy did not exceed 15%. Clinical application of the method to patients with neuropathic pain showed plasma accumulation of (+)-tramadol and (+)-M2 after a single oral dose of racemic tramadol. Fractions unbound of tramadol, M1 or M2 were not enantioselective in the patients investigated. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Background: Ayahuasca is a psychoactive plant beverage originally used by indigenous people throughout the Amazon Basin, long before its modern use by syncretic religious groups established in Brazil, the USA and European countries. The objective of this study was to develop a method for quantification of dimethyltryptamine and beta-carbolines in human plasma samples. Results: The analytes were extracted by means of C18 cartridges and injected into LC-MS/MS, operated in positive ion mode and multiple reaction monitoring. The LOQs obtained for all analytes were below 0.5 ng/ml. By using the weighted least squares linear regression, the accuracy of the analytical method was improved at the lower end of the calibration curve (from 0.5 to 100 ng/ml; r(2)> 0.98). Conclusion: The method proved to be simple, rapid and useful to estimate administered doses for further pharmacological and toxicological investigations of ayahuasca exposure.
Resumo:
The present work describes for the first time the use of SPME coupled to LC-MS/MS employing the polar organic mode in a stereoselective fungal biotransformation study to investigate the fungi ability to biotransform the drug risperidone into its chiral and active metabolite 9-hydroxyrisperidone (9-RispOH). The chromatographic separation was performed on a Chiralcel OJ-H column using methanol:ethanol (50:50, v/v) plus 0.2% triethylamine as the mobile phase at a flow rate of 0.8 mL min(-1). The SPME process was performed using a C18 fiber, 30 min of extraction time and 5 min of desorption time in the mobile phase. The method was completely validated and all parameters were in agreement with the literature recommendations. The Cunninghamella echinulata fungus was able to biotransform risperidone into the active metabolite, (+)-9-RispOH, resulting in 100% of enantiomeric excess. The Cunninghamella elegans fungus was also able to stereoselectively biotransform risperidone into (+)- and (-)-9-RispOH enantiomers at different rates. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The phenolic composition of heartwood extracts from Fraxinus excelsior L. and F. americana L., both before and after toasting in cooperage, was studied using LC-DAD/ESI-MS/MS. Low-molecular weight (LMW) phenolic compounds, secoiridoids, phenylethanoid glycosides, dilignols and oligolignols compounds were detected, and 48 were identified, or tentatively characterized, on the basis of their retention time, UV/Vis and MS spectra, and MS fragmentation patterns. Some LMW phenolic compounds like protocatechuic acid and aldehyde, hydroxytyrosol and tyrosol, were unlike to those for oak wood, while ellagic and gallic acid were not found. The toasting of wood resulted in a progressive increase in lignin degradation products with regard to toasting intensity. The levels of some of these compounds in medium-toasted ash woods were much higher than those normally detected in toasted oak, highlighting vanillin levels, thus a more pronounced vanilla character can be expected when using toasted ash wood in the aging wines. Moreover, in seasoned wood, we found a great variety of phenolic compounds which had not been found in oak wood, especially oleuropein, ligstroside and olivil, along with verbascoside and isoverbascoside in F. excelsior, and oleoside in F. americana. Toasting mainly provoked their degradation, thus in medium-toasted wood, only four of them were detected. This resulted in a minor differentiation between toasted ash and oak woods. The absence of tannins in ash wood, which are very important in oak wood, is another peculiar characteristic that should be taken into account when considering its use in cooperage. Copyright (C) 2012 John Wiley & Sons, Ltd.
Resumo:
Lychnophora salicifolia Mart., which occurs in the Brazilian Cerrado in the states of Bahia and Minas Gerais as well as in the southeast of the state of Goias, is the most widely distributed and also the most polymorphic species of the genus. This plant is popularly known to have anti-inflammatory and analgesic activities. In this work, we have studied the variation in terms of polar metabolites of ninety-three Lychnophora salicifolia Mart, specimens collected from different regions of the Brazilian Cerrado. Identification of the constituents of this mixture was carried out by analysis of the UV spectra and MS data after chromatographic separation. Twenty substances were identified, including chlorogenic acid derivatives, a flavonoid C-glucoside, and other sesquiterpenes. The analytical method was validated, and the reliability and credibility of the results was ensured for the purposes of this study. The concentration range required for analysis of content variability within the analyzed group of specimens was covered with appropriate values of limits of detection and quantitation, as well as satisfactory precision and recovery. A quantitative variability was observed among specimens collected from the same location, but on average they were similar from a chemical viewpoint. In relation to the study involving specimens from different locations, there were both qualitative and quantitative differences among plants collected from different regions of Brazil. Statistical analysis revealed that there is a correlation between geographical localization and polar metabolites profile for specimens collected from different locations. This is evidence that the pattern of metabolites concentration depends on the geographical distribution of the specimens. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Metabolomics has become an invaluable tool to unveil biology of pathogens, with immediate application to chemotherapy. It is currently accepted that there is not one single technique capable of obtaining the whole metabolic fingerprint of a biological system either due to their different physical-chemical properties or concentrations. In this work, we have explored the capability of capillary electrophoresis mass spectrometry with a sheathless interface with electrospray ionization (CE-ESI-TOF-MS) to separate metabolites in order to be used as a complementary technique to LC. As proof of concept, we have compared the metabolome of Leishmania infantum promastigotes BCN 150 (Sb (III) IC50 = 20.9 mu M) and its variation when treated with 120 mu M of Sb(III) potassium tartrate for 12 h, as well as with its Sb(III) resistant counterpart obtained by growth of the parasites under increasing Sb(III) in a step-wise manner up to 180 mu M. The number of metabolites compared were of 264 for BCN150 Sb(III) treated versus nontreated and of 195 for Sb(III) resistant versus susceptible parasites. After successive data filtering, differences in seven metabolites identified in databases for Leishmania pathways, showed the highest significant differences, corresponding mainly to amino acids or their metabolite surrogates. Most of them were assigned to sulfur containing amino acids and polyamine biosynthetic pathways, of special relevance considering the deterioration of the thiol-dependent redox metabolism in Leishmania by Sb(III). Given the low concentrations typical for most of these metabolites, the assay can be considered a success that should be explored for new biological questions.
Resumo:
Former bioactivity-guided analysis of the marine invertebrate Eudistoma vannamei led to the isolation of staurosporine derivatives, which revealed strong cytotoxic activity against several human cancer cell lines. The occurrence of such alkaloids in E. vannamei may be correlated to the presence of associated biota, such as Streptomyces bacteria. In agreement to this hypothesis, marine microorganisms associated with E. vannamei were recovered and cultured, leading to a total of 84 isolated bacterial strains. Gas phase fragmentation reactions of staurosporine and derivatives were systematically studied and the analyzed results further supported by computational chemistry studies. The resulting fragment patterns were used to search for the presence of different derivatives in extracts of isolated microorganisms, thereby using LC-MS/MS analysis in MRM mode. These results evidenced that one isolated Streptomyces sp. was able to generate staurosporine, while none of the hydroxy-7-oxo derivatives were detected. Finally, significant cytotoxic activity against human cancer lines was observed for one of the extracts.
Resumo:
Former bioactivity-guided analysis of the marine invertebrate Eudistoma vannamei led to the isolation of staurosporine derivatives, which revealed strong cytotoxic activity against several human cancer cell lines. The occurrence of such alkaloids in E. vannamei may be correlated to the presence of associated biota, such as Streptomyces bacteria. In agreement to this hypothesis, marine microorganisms associated with E. vannamei were recovered and cultured, leading to a total of 84 isolated bacterial strains. Gas phase fragmentation reactions of staurosporine and derivatives were systematically studied and the analyzed results further supported by computational chemistry studies. The resulting fragment patterns were used to search for the presence of different derivatives in extracts of isolated microorganisms, thereby using LC-MS/MS analysis in MRM mode. These results evidenced that one isolated Streptomyces sp. was able to generate staurosporine, while none of the hydroxy-7-oxo derivatives were detected. Finally, significant cytotoxic activity against human cancer lines was observed for one of the extracts.