4 resultados para LATERAL WINDOW APPROACH
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Purpose: The present article sought to evaluate the effectiveness of a piezoelectric surgical unit for maxillary sinus augmentation surgeries in avoiding perforation of the sinus membrane and other possible procedural complications in patients with anatomical variations of the sinus. Materials and Methods: Twenty-five patients presenting sinus anatomical variations, who were indicated for a total of 40 sinus grafting procedures performed by the lateral window approach with a piezoelectric device, were analyzed. After 6 months of healing, implants were placed. Information collected included clinical and computed tomographic information on anatomical variations in the sinus bone walls, in the size of the sinus, and in the thickness of the sinus membrane. Occurrence of sinus membrane perforation and computed tomographic measurements of the amount of bone height gained with the grafting procedures were also recorded. Results: Only two patients presented a small perforation (less than 5 mm in diameter) of the sinus membrane, which occurred only after osteotomies of the lateral windows and did not compromise the surgical outcome. No implants were lost during a mean follow-up period of 19 months. Conclusion: The use of piezoelectric surgery allowed for the accomplishment of all rehabilitation treatments within the follow-up period of this study. INT J ORAL MAXILLOFAC IMPLANTS 2012;27:1211-1215
Resumo:
The superior colliculus (SC) is responsible for sensorimotor transformations required to direct gaze toward or a way from unexpected, biologically salient events. Significant changes in the external world are signaled to SC through primary multisensory afferents, spatially organized according to a retinotopic topography. For animals, where anunexpected event could indicate the presence of either predator or prey, early decisions to approach or avoid are particularly important. Rodents' ecology dictates predators are most often detected initially as movements in upper visual field (mapped in medial SC), while appetitive stimuli are normally found in lower visual field (mapped in lateral SC). Our purpose was to exploit this functional segregation to reveal neural sites that can bias or modulate initial approach or avoidance responses. Small injections of Fluoro-Gold were made into medial or lateral sub-regions of intermediate and deep layers of SC (SCm/SCl). A remarkable segregation of input to these two functionally defined areas was found. (i) There were structures that projected only to SCm (e.g., specific cortical areas, lateral geniculate and suprageniculate thalamic nuclei, ventromedial and premammillary hypothalamic nuclei, and several brain-stem areas) or SCl (e.g., primary somatosensory cortex representing upper body parts and vibrissae and parvicellular reticular nucleus in the brainstem). (ii) Other structures projected to both SCm and SCl but from topographically segregated populations of neurons (e.g., zona incerta and substantia nigra pars reticulata). (iii) There were a few brainstem areas in which retrogradely labeled neurons were spatially overlapping (e.g., pedunculopontine nucleus and locus coeruleus). These results indicate significantly more structures across the rat neuraxis are in a position to modulate defense responses evoked from SCm, and that neural mechanisms modulating SC-mediated defense or appetitive behavior are almost entirely segregated.
Resumo:
Aim: To evaluate the effect of a space-maintaining device fixed to the lateral wall of the maxillary sinus after the elevation of the sinus mucosa on bone filling of the sinus cavity. Material and methods: Immediately after the elevation of the maxillary sinus Schneiderian membrane accomplished through lateral antrostomy in four monkeys, a titanium device was affixed to the lateral sinus wall protruding into the sinus cavity to maintain the mucosa elevated without the use of grafting material. The healing of the tissue around the implants was evaluated after 3 and 6 months. Ground sections were prepared and analyzed histologically. Results: The void under the elevated sinus membrane, originally filled with the blood clot, was reduced after 3 as well as after 6 months of healing of about 56% and 40.5%, respectively. In seven out of eight cases, the devices had perforated the sinus mucosa. The formation of mineralized bone and bone marrow amounted to about 42% and 69% after 3 and 6 months, respectively. The connective tissue represented about 53% and 23% of the newly formed tissue after 3 and 6 months, respectively. Conclusions: New bone formation was found below the devices. However, shrinkage of the newly formed tissue was observed both after 3 and 6 months of healing. Hence, the space-maintaining function of the devices used in the present study has to be questioned.
Resumo:
Conclusion: The extended retrolabyrinthine approach (RLA) is a safe and reliable approach for auditory brainstem placement in children. The surgical landmarks to reach cochlear nucleus are adequately exposed by this approach. Objective: To describe a new approach option for auditory brainstem implants (ABIs) in children, highlighting the anatomical landmarks to appropriately expose the foramen of Luschka. Methods: Three prelingually deafened children consecutively operated for ABIs via the RLA. Results: ABI placement via the RLA was successfully performed in all children without any further complications except multidirectional nystagmus in one child. The RLA we employed differed from that used for vestibular schwannoma only in the removal of the posterior semicircular canal. The lateral and superior semicircular canals and the vestibule remained intact, and there was no need to expose the dura of the internal auditory meatus. The jugular bulb was completely exposed to allow adequate visualization of the ninth cranial nerve and cerebellar flocculus.