4 resultados para LABORATORY RATS

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The fact that there is a complex and bidirectional communication between the immune and nervous systems has been well demonstrated. Lipopolysaccharide (LPS), a component of gram-negative bacteria, is widely used to systematically stimulate the immune system and generate profound physiological and behavioural changes, also known as sickness behaviour (e.g. anhedonia, lethargy, loss of appetite, anxiety, sleepiness). Different ethological tools have been used to analyse the behavioural modifications induced by LPS; however, many researchers analysed only individual tests, a single LPS dose or a unique ethological parameter, thus leading to disagreements regarding the data. In the present study, we investigated the effects of different doses of LPS (10, 50, 200 and 500 mu g/kg, i.p.) in young male Wistar rats (weighing 180200 g; 89 weeks old) on the ethological and spatiotemporal parameters of the elevated plus maze, light-dark box, elevated T maze, open-field tests and emission of ultrasound vocalizations. There was a dose-dependent increase in anxiety-like behaviours caused by LPS, forming an inverted U curve peaked at LPS 200 mu g/kg dose. However, these anxiety-like behaviours were detected only by complementary ethological analysis (stretching, grooming, immobility responses and alarm calls), and these reactions seem to be a very sensitive tool in assessing the first signs of sickness behaviour. In summary, the present work clearly showed that there are resting and alertness reactions induced by opposite neuroimmune mechanisms (neuroimmune bias) that could lead to anxiety behaviours, suggesting that misunderstanding data could occur when only few ethological variables or single doses of LPS are analysed. Finally, it is hypothesized that this bias is an evolutionary tool that increases animals security while the body recovers from a systemic infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alcoholism is a chronic disorder characterized by the appearance of a withdrawal syndrome following the abrupt cessation of alcohol intake that includes symptoms of physical and emotional disturbances, anxiety being the most prevalent symptom. In humans, it was shown that anxiety may increase the probability of relapse. In laboratory animals, however, the use of anxiety to predict alcohol preference has remained difficult. Excitatory amino acids as glutamate have been implicated in alcohol hangover and may be responsible for the seizures and anxiety observed during withdrawal. The dorsal periaqueductal gray (DPAG) is a midbrain region critical for the modulation/expression of anxiety- and fear-related behaviors and the propagation of seizures induced by alcohol withdrawal, the glutamate neurotransmission being one of the most affected. The present study was designed to evaluate whether low- (LA) and high-anxiety rats (HA), tested during the alcohol hangover phase, in which anxiety is the most prevalent symptom, are more sensitive to the reinforcing effects of alcohol when tested in a voluntary alcohol drinking procedure. Additionally, we were interested in investigating the main effects of reducing the excitatory tonus of the dorsal midbrain, after the blockade of the ionotropic glutamate receptors into the DPAG, on the voluntary alcohol intake of HA and LA motivated rats that were made previously experienced with the free operant response of alcohol drinking. For this purpose, we used local infusions of the N-metil D-Aspartato (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-kainate receptors antagonist DL-2-Amino-7-phosphonoheptanoic acid - DL-AP7 (10 nmol/0.2 mu l) and L-glutamic acid diethyl ester - GDEE (160 nmol/0.2 mu l) respectively. Alcohol intoxication was produced by 10 daily bolus intraperitonial (IP) injections of alcohol (2.0 g/kg). Peak-blood alcohol levels were determined by gas-chromatography analysis in order to assess blood-alcohol content. Unconditioned and conditioned anxiety-like behavior was assessed by the use of the fear-potentiated startle procedure (FPS). Data collected showed that anxiety and alcohol drinking in HA animals are positively correlated in animals that were made previously familiarized with the anxiolytic effects of alcohol. In addition, anxiety-like behavior induced during alcohol hangover seems to be an effect of changes in glutamatergic neurotransmission into DPAG possibly involving AMPA/kainate and NMDA receptors, among others. (C) 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

South American subterranean rodents (Ctenomys aff. knighti), commonly known as tuco-tucos, display nocturnal, wheel-running behavior under light-dark (LD) conditions, and free-running periods >24 h in constant darkness (DD). However, several reports in the field suggested that a substantial amount of activity occurs during daylight hours, leading us to question whether circadian entrainment in the laboratory accurately reflects behavior in natural conditions. We compared circadian patterns of locomotor activity in DD of animals previously entrained to full laboratory LD cycles (LD12:12) with those of animals that were trapped directly from the field. In both cases, activity onsets in DD immediately reflected the previous dark onset or sundown. Furthermore, freerunning periods upon release into DD were close to 24 h indicating aftereffects of prior entrainment, similarly in both conditions. No difference was detected in the phase of activity measured with and without access to a running wheel. However, when individuals were observed continuously during daylight hours in a semi-natural enclosure, they emerged above-ground on a daily basis. These day-time activities consisted of foraging and burrow maintenance, suggesting that the designation of this species as nocturnal might be inaccurate in the field. Our study of a solitary subterranean species suggests that the circadian clock is entrained similarly under field and laboratory conditions and that day-time activity expressed only in the field is required for foraging and may not be time-dictated by the circadian pacemaker.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated for the first time the life cycle of Amblyomma ovale in the laboratory. For this purpose, larvae and nymphs were exposed to Gallus gallus (chickens), Cavia porcellus (guinea pigs), Rattus norvegicus (wistar rats), Oryctolagus cuniculus (domestic rabbits), Calomys callosus (vesper mouse), and Didelphis albiventris (white-eared opossum). Nymphs were also exposed to Nectomys squamipes (South American water rat). Adult ticks were fed on dogs. The life-cycle of A. ovale in laboratory could be completed in an average period of ca. 190 days, considering prefeeding periods of 30 days for each of the parasitic stages. Vesper mice were the most suitable host for A. ovale larvae, whereas water rats were the most suitable host for A. ovale nymphs. Our results, coupled with literature data, strongly indicate that small rodents have an important role in the life history of A. ovale. Chickens (the only avian host used in the present study) showed to be moderately suitable hosts for subadult A. ovale ticks, indicating that wild birds might have a secondary role in the life history of A. ovale. Domestic dogs showed to be highly suitable for the adult stage of A. ovale, in agreement with literature data that indicate that the domestic dog is currently one of the most important hosts of A. ovale adult ticks in Latin America.