9 resultados para Knowledge Networks
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Semi-supervised learning is one of the important topics in machine learning, concerning with pattern classification where only a small subset of data is labeled. In this paper, a new network-based (or graph-based) semi-supervised classification model is proposed. It employs a combined random-greedy walk of particles, with competition and cooperation mechanisms, to propagate class labels to the whole network. Due to the competition mechanism, the proposed model has a local label spreading fashion, i.e., each particle only visits a portion of nodes potentially belonging to it, while it is not allowed to visit those nodes definitely occupied by particles of other classes. In this way, a "divide-and-conquer" effect is naturally embedded in the model. As a result, the proposed model can achieve a good classification rate while exhibiting low computational complexity order in comparison to other network-based semi-supervised algorithms. Computer simulations carried out for synthetic and real-world data sets provide a numeric quantification of the performance of the method.
Resumo:
Methods from statistical physics, such as those involving complex networks, have been increasingly used in the quantitative analysis of linguistic phenomena. In this paper, we represented pieces of text with different levels of simplification in co-occurrence networks and found that topological regularity correlated negatively with textual complexity. Furthermore, in less complex texts the distance between concepts, represented as nodes, tended to decrease. The complex networks metrics were treated with multivariate pattern recognition techniques, which allowed us to distinguish between original texts and their simplified versions. For each original text, two simplified versions were generated manually with increasing number of simplification operations. As expected, distinction was easier for the strongly simplified versions, where the most relevant metrics were node strength, shortest paths and diversity. Also, the discrimination of complex texts was improved with higher hierarchical network metrics, thus pointing to the usefulness of considering wider contexts around the concepts. Though the accuracy rate in the distinction was not as high as in methods using deep linguistic knowledge, the complex network approach is still useful for a rapid screening of texts whenever assessing complexity is essential to guarantee accessibility to readers with limited reading ability. Copyright (c) EPLA, 2012
Resumo:
The realization that statistical physics methods can be applied to analyze written texts represented as complex networks has led to several developments in natural language processing, including automatic summarization and evaluation of machine translation. Most importantly, so far only a few metrics of complex networks have been used and therefore there is ample opportunity to enhance the statistics-based methods as new measures of network topology and dynamics are created. In this paper, we employ for the first time the metrics betweenness, vulnerability and diversity to analyze written texts in Brazilian Portuguese. Using strategies based on diversity metrics, a better performance in automatic summarization is achieved in comparison to previous work employing complex networks. With an optimized method the Rouge score (an automatic evaluation method used in summarization) was 0.5089, which is the best value ever achieved for an extractive summarizer with statistical methods based on complex networks for Brazilian Portuguese. Furthermore, the diversity metric can detect keywords with high precision, which is why we believe it is suitable to produce good summaries. It is also shown that incorporating linguistic knowledge through a syntactic parser does enhance the performance of the automatic summarizers, as expected, but the increase in the Rouge score is only minor. These results reinforce the suitability of complex network methods for improving automatic summarizers in particular, and treating text in general. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This work introduces the phenomenon of Collective Almost Synchronisation (CAS), which describes a universal way of how patterns can appear in complex networks for small coupling strengths. The CAS phenomenon appears due to the existence of an approximately constant local mean field and is characterised by having nodes with trajectories evolving around periodic stable orbits. Common notion based on statistical knowledge would lead one to interpret the appearance of a local constant mean field as a consequence of the fact that the behaviour of each node is not correlated to the behaviours of the others. Contrary to this common notion, we show that various well known weaker forms of synchronisation (almost, time-lag, phase synchronisation, and generalised synchronisation) appear as a result of the onset of an almost constant local mean field. If the memory is formed in a brain by minimising the coupling strength among neurons and maximising the number of possible patterns, then the CAS phenomenon is a plausible explanation for it.
Resumo:
The adoption of principles of equality and universality stipulated in legislation for the sanitation sector requires discussions on innovation. The existing model was able to meet sanitary demands, but was unable to attend all areas causing disparities in vulnerable areas. The universal implementation of sanitation requires identification of the know-how that promotes it and analysis of the model adopted today to establish a new method. Analysis of how different viewpoints on the restructuring process is necessary for the definition of public policy, especially in health, and understanding its complexities and importance in confirming social practices and organizational designs. These are discussed to contribute to universal implementation of sanitation in urban areas by means of a review of the literature and practices in the industry. By way of conclusion, it is considered that accepting a particular concept or idea in sanitation means choosing some effective interventions in the network and on the lives of individual users, and implies a redefinition of the space in which it exercises control and management of sewerage networks, such that connected users are perceived as groups with different interests.
Resumo:
A large historiographic tradition has studied the Brazilian state, yet we know relatively little about its internal dynamics and particularities. The role of informal, personal, and unintentional ties has remained underexplored in most policy network studies, mainly because of the pluralist origin of that tradition. It is possible to use network analysis to expand this knowledge by developing mesolevel analysis of those processes. This article proposes an analytical framework for studying networks inside policy communities. This framework considers the stable and resilient patterns that characterize state institutions, especially in contexts of low institutionalization, particularly those found in Latin America and Brazil. The article builds on research on urban policies in Brazil to suggest that networks made of institutional and personal ties structure state organizations internally and insert them,into broader political scenarios. These networks, which I call state fabric, frame politics, influence public policies, and introduce more stability and predictability than the majority of the literature usually considers. They also form a specific power resource-positional power, associated with the positions that political actors occupy-that influences politics inside and around the state.
Resumo:
The concept of industrial clustering has been studied in-depth by policy makers and researchers from many fields, mainly due to the competitive advantages it may bring to regional economies. Companies often take part in collaborative initiatives with local partners while also taking advantage of knowledge spillovers to benefit from locating in a cluster. Thus, Knowledge Management (KM) and Performance Management (PM) have become relevant topics for policy makers and cluster associations when undertaking collaborative initiatives. Taking this into account, this paper aims to explore the interplay between both topics using a case study conducted in a collaborative network formed within a cluster. The results show that KM should be acknowledged as a formal area of cluster management so that PM practices can support knowledge-oriented initiatives and therefore make better use of the new knowledge created. Furthermore, tacit and explicit knowledge resulting from PM practices needs to be stored and disseminated throughout the cluster as a way of improving managerial practices and regional strategic direction. Knowledge Management Research & Practice (2012) 10, 368-379. doi:10.1057/kmrp.2012.23
Resumo:
Abstract Background A popular model for gene regulatory networks is the Boolean network model. In this paper, we propose an algorithm to perform an analysis of gene regulatory interactions using the Boolean network model and time-series data. Actually, the Boolean network is restricted in the sense that only a subset of all possible Boolean functions are considered. We explore some mathematical properties of the restricted Boolean networks in order to avoid the full search approach. The problem is modeled as a Constraint Satisfaction Problem (CSP) and CSP techniques are used to solve it. Results We applied the proposed algorithm in two data sets. First, we used an artificial dataset obtained from a model for the budding yeast cell cycle. The second data set is derived from experiments performed using HeLa cells. The results show that some interactions can be fully or, at least, partially determined under the Boolean model considered. Conclusions The algorithm proposed can be used as a first step for detection of gene/protein interactions. It is able to infer gene relationships from time-series data of gene expression, and this inference process can be aided by a priori knowledge available.
Resumo:
Semi-qualitative probabilistic networks (SQPNs) merge two important graphical model formalisms: Bayesian networks and qualitative probabilistic networks. They provade a very Complexity of inferences in polytree-shaped semi-qualitative probabilistic networks and qualitative probabilistic networks. They provide a very general modeling framework by allowing the combination of numeric and qualitative assessments over a discrete domain, and can be compactly encoded by exploiting the same factorization of joint probability distributions that are behind the bayesian networks. This paper explores the computational complexity of semi-qualitative probabilistic networks, and takes the polytree-shaped networks as its main target. We show that the inference problem is coNP-Complete for binary polytrees with multiple observed nodes. We also show that interferences can be performed in time linear in the number of nodes if there is a single observed node. Because our proof is construtive, we obtain an efficient linear time algorithm for SQPNs under such assumptions. To the best of our knowledge, this is the first exact polynominal-time algorithm for SQPn. Together these results provide a clear picture of the inferential complexity in polytree-shaped SQPNs.