2 resultados para Knotted axioms
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
We study the coincidence theory of maps between two manifolds of the same dimension from an axiomatic viewpoint. First we look at coincidences of maps between manifolds where one of the maps is orientation true, and give a set of axioms such that characterizes the local index (which is an integer valued function). Then we consider coincidence theory for arbitrary pairs of maps between two manifolds. Similarly we provide a set of axioms which characterize the local index, which in this case is a function with values in Z circle plus Z(2). We also show in each setting that the group of values for the index (either Z or Z circle plus Z(2)) is determined by the axioms. Finally, for the general case of coincidence theory for arbitrary pairs of maps between two manifolds we provide a set of axioms which characterize the local Reidemeister trace which is an element of an abelian group which depends on the pair of functions. These results extend known results for coincidences between orientable differentiable manifolds. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We consider the question whether there exists a Banach space X of density continuum such that every Banach space of density at most continuum isomorphically embeds into X (called a universal Banach space of density c). It is well known that a""(a)/c (0) is such a space if we assume the continuum hypothesis. Some additional set-theoretic assumption is indeed needed, as we prove in the main result of this paper that it is consistent with the usual axioms of set-theory that there is no universal Banach space of density c. Thus, the problem of the existence of a universal Banach space of density c is undecidable using the usual axioms of set-theory. We also prove that it is consistent that there are universal Banach spaces of density c, but a""(a)/c (0) is not among them. This relies on the proof of the consistency of the nonexistence of an isomorphic embedding of C([0, c]) into a""(a)/c (0).