12 resultados para King, Jimmy
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The spatial and temporal variation of microphytobenthic biomass in the nearshore zone of Martel Inlet (King George Island, Antarctica) was estimated at several sites and depths (10-60 m), during three summer periods (1996/1997, 1997/1998, 2004/2005). The mean values were inversely related to the bathymetric gradient: higher ones at 10-20 m depth (136.2 +/- A 112.5 mg Chl a m(-2), 261.7 +/- A 455.9 mg Phaeo m(-2)), intermediate at 20-30 m (55.6 +/- A 39.5 mg Chl a m(-2), 108.8 +/- A 73.0 mg Phaeo m(-2)) and lower ones at 40-60 m (22.7 +/- A 23.7 mg Chl a m(-2), 58.3 +/- A 38.9 mg Phaeo m(-2)). There was also a reduction in the Chl a/Phaeo ratio with depth, from 3.2 +/- A 3.2 (10-20 m) to 0.7 +/- A 1.0 (40-60 m), showing a higher contribution of senescent phytoplankton and/or macroalgae debris at the deeper sites and the limited light flux reaching the bottom. Horizontal differences found in the biomass throughout the inlet could not be clearly related to hydrodynamics or proximity to glaciers, but with sediment characteristics. An inter-summer variation was observed: the first summer presented the highest microphytobenthic biomass apparently related to more hydrodynamic conditions, which causes the deposition of allochthonous material.
Resumo:
This investigation attempts to determine which environmental parameters of the bottom water and sediment control recent foraminifera fauna at Ezcurra Inlet (King George Island, Antarctica), using data collected during four summers (2002/03, 2003/04, 2004/05 and 2006/07). The study revealed that Ezcurra Inlet contain typical Antarctic foraminifera fauna with three distinct assemblages and few differences in environmental parameters. The species Bolivina pseudopunctata, Fursenkoina fusiformis, Portatrochammina antarctica, and Adercotryma glomerata were abundant in the samples. An elevated abundance, richness and diversity were common at the entrance of the inlet at depths greater than 55 m, where the inlet was characterized by low temperatures and muddy sand. In the inner part of the inlet (depth 30-55 m), richness and diversity were low and the most significant species were Cassidulinoides parkerianus, C. porrectus, and Psammosphaera fusca. Shallow waters showed low values of richness and abundance and high temperatures coupled with coarser sediment. In areas with high suspended matter concentrations and pH values associated with low salinity the most representative species were Hippocrepinella hirudinea and Hemisphaerammina bradyi.
Resumo:
Polychlorinated biphenyls (PCBs) and organochlorine pesticides are compounds that do not occur naturally in the environment and are not easily degraded by chemical or microbiological action. In the present work, those compounds were analysed in unhatched penguin eggs and whole krill collected in Admiralty Bay, King George Island, Antarctica in the austral summers of 2004-2005 and 2005-2006. The compounds found in higher levels (in a wet weight basis) were, in most of the egg samples, the PCBs (2.53-78.7 ng g(-1)), DDTs (2.07-38.0 ng g(-1)) and HCB (4.99-39.1 ng g(-1)) and after Kruskal-Wallis ANOVA, the occurrence seemed to be species-specific for the Pygoscelis genus. In all of the cases, the levels found were not higher than the ones in Arctic birds in a similar trophic level. The krill samples analysis allowed estimating the biomagnification factors (which resulted in up to 363 for HCB, one order of magnitude higher than DDTs and chlordanes and two orders of magnitude higher than the other groups) of the compounds found in eggs, whose only source of contamination is the female-offspring transfer. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper describes the first results of polycyclic aromatic hydrocarbons (PAHs) and spheroidal carbonaceous particles (SCPs) in sediment cores of Admiralty Bay, Antarctica. These markers were used to assess the local input of anthropogenic materials (particulate and organic compounds) as a result of the influence of human occupation in a sub-Antarctic region and a possible long-range atmospheric transport of combustion products from sources in South America. The highest SCPs and PAHs concentrations were observed during the last 30 years, when three research stations were built in the area and industrial activities in South America increased. The concentrations of SCPs and PAHs were much lower than those of other regions in the northern hemisphere and other reported data for the southern hemisphere. The PAH isomer ratios showed that the major sources of PAHs are fossil fuels/petroleum, biomass combustion and sewage contribution generally close to the Brazilian scientific station. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Antarctic Brazilian Program (PROANTAR)
Resumo:
Admiralty Bay (Antarctica) hosts three scientific stations (Ferraz, Arctowski and Macchu Picchu), which require the use of fossil fuel as an energy source. Fossil fuels are also considered the main source of pollution in the area, representing important inputs of major pollutants (organic compounds) and trace metals and metalloids of environmental interest. Accordingly, this work presents the results of As, Cd, Cr, Cu, Ni, Pb and Zn in sediment profiles from Admiralty Bay. The sediment results from Ferraz station were slightly higher than the other sampling sites. The highest contents were observed for Cu and Zn (from 44 to 89 mg kg(-1)). Otherwise, by using enrichment factors and geochronology analysis, the most relevant enrichment was observed for As in the samples collected close to the Ferraz station, indicating that increasing As content may be associated with the activities associated with this site. Published by Elsevier Ltd.
Resumo:
The study of Antarctic archaeal communities adds information on the biogeography of this group and helps understanding the dynamics of biogenic methane production in such extreme habitats. Molecular methods were combined to methane flux determinations in Martel Inlet, Admiralty Bay, to assess archaeal diversity, to obtain information about contribution of the area to atmospheric methane budget and to detect possible interferences of the Antarctic Brazilian Station Comandante Ferraz (EACF) wastewater discharge on local archaeal communities and methane emissions. Methane fluxes in Martel Inlet ranged from 3.2 to 117.9 mu mol CH(4) m(-2) d(-1), with an average of 51.3 +/- 8.5 mu mol CH(4) m(-2) d(-1) and a median of 57.6 mu mol CH(4) m(-2)d(-1). However, three negative fluxes averaging -11.3 mu mol CH(4) m(-2) d(-1) were detected in MacKellar Inlet, indicating that Admiralty Bay can be either a source or sink of atmospheric methane. Denaturing gradient gel electrophoresis (DGGE) showed that archaeal communities at EACF varied with depth and formed a group separated from the reference sites. Granulometric analysis indicated that differences observed may be mostly related to sediment type. However, an influence of wastewater input could not be discarded, since higher methane fluxes were found at CF site. suggesting stimulation of local methanogenesis. DGGE profile of the wastewater sample grouped separated from all other samples, suggesting that methanogenesis stimulation may be due to changes in environmental conditions rather than to the input of allochtonous species from the wastewater. 16S ribosomal DNA clone libraries analysis showed that all wastewater sequences were related to known methanogenic groups belonging to the hydrogenotrophic genera Methanobacterium and Methanobrevibacter and the aceticlastic genus Methanosaeta. EACF and Botany Point sediment clone libraries retrieved only groups of uncultivated Archaea, with predominance of Crenarchaeota representatives (MCG, MG1, MBG-B, MBG-C and MHVG groups). Euryarchaeota sequences found were mostly related to the LDS and RC-V groups, but MBG-D and DHVE-5 were also present. No representatives of cultivated methanogenic groups were found, but coverage estimates suggest that a higher number of clones would have to be analyzed in order to cover the greater archaeal diversity of Martel Inlet sediment. Nevertheless, the analysis of the libraries revealed groups not commonly found by other authors in Antarctic habitats and also indicated the presence of groups of uncultivated archaea previously associated to methane rich environments or to the methane cycle. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Admiralty Bay on the King George Island hosts the Brazilian, Polish and Peruvian research stations as well as the American and Ecuadorian field stations. Human activities in this region require the use of fossil fuels as an energy source, thereby placing the region at risk of hydrocarbon contamination. Hydrocarbon monitoring was conducted on water and sediment samples from the bay over 15 years. Fluorescence spectroscopy was used for the analysis of total polycyclic aromatic hydrocarbons (PAHs) in seawater samples and gas chromatography with flame ionization and/or mass spectrometric detection was used to analyse individual n-alkanes and PAHs in sediment samples. The results revealed that most sites contaminated by these Compounds are around the Brazilian and Polish research stations due to the intense human activities, mainly during the summer. Moreover, the sediments revealed the presence of hydrocarbons from different sources, suggesting a mixture of the direct input of oil or derivatives and derived from hydrocarbon combustion. A decrease in PAH concentrations occurred following improvement of the sewage treatment facilities at the Brazilian research station, indicating that the contribution from human waste may be significant.
Resumo:
This study documents one of the slowest feeding behaviors ever recorded for a muricid gastropod in one of the most biotically rigorous regions on the planet. In Pacific Panama, Vitularia salebrosa attacks mollusks by drilling through their shells. The duration of attacks estimated by isotope sclerochronology of oyster shells collected during attacks in progress range from 90 to 230 days, while experimental observation of interactions documented one attack greater than 103 days. The prolonged nature of attacks suggests that V. salebrosa is best characterized as an ectoparasite than as a predator, which is the ancestral condition in the Muricidae. An ectoparasitic lifestyle is also evident in the unusual interaction traces of this species, which include foot scars, feeding tunnels and feeding tubes, specialized soft anatomy, and in the formation of male-female Pairs, which is consistent with protandrous hermaphroditism, as is typical in sedentary gastropods. To delay death of its host, V. salebrosa targets renewable resources when feeding, such as blood and digestive glands. A congener, Vitularia miliaris from the Indo-Pacific, has an identical feeding biology The origin and persistence of extremely slow feeding in the tropics challenges our present understanding of selective pressures influencing the evolution of muricid feeding behaviors and morphological adaptations. Previously, it has been suggested that faster feeding is advantageous because it permits predators to spend a greater proportion of time hiding in enemy-free refugia or to take additional prey, the energetic benefits of which could be translated into increased fecundity or defenses. The benefits of exceptionally slow feeding have received little consideration. In the microhabitat preferred by V. salebrosa (beneath boulders), it is possible that prolonged interactions with hosts decrease vulnerability to enemies by reducing the frequency of risky foraging events between feedings . Ectoparasitic feeding through tunnels by V. salebrosa may also reduce competitive interactions with kleptoparasites (e.g., crabs, snails) that steal food through the gaped valves of dead or dying hosts.
Resumo:
The morphology and anatomy of Vitularia salebrosa, a muricid ectoparasitic on other mollusks, are investigated based on study of specimens from western Panama. Distinctive characters of this species include the small size of the buccal mass and radular apparatus, simplification of the odontophore muscles and diminished lateral teeth of the radula; all elongated, narrow proboscis; narrow digestive tract and a differentiable glandular region at the beginning of the posterior esophagus. These traits are consistent with adaptive specialization for an ectoparasitic life history.
Resumo:
Exiguobacterium antarcticum is a psychotropic bacterium isolated for the first time from microbial mats of Lake Fryxell in Antarctica. Many organisms of the genus Exiguobacterium are extremophiles and have properties of biotechnological interest, e. g., the capacity to adapt to cold, which make this genus a target for discovering new enzymes, such as lipases and proteases, in addition to improving our understanding of the mechanisms of adaptation and survival at low temperatures. This study presents the genome of E. antarcticum B7, isolated from a biofilm sample of Ginger Lake on King George Island, Antarctic peninsula.
Resumo:
Nuculid bivalves of the Cape Melville Formation (Early Miocene, King George Island) are reviewed. Ten bivalve taxa are listed from the formation in the families Nuculidae (two species), Sareptidae, Malletiidae, Limopsidae (two species), Limidae, Pectinidae, Hiatellidae, and Periplomatidae. The Nuculidae consist of two species of Leionucula Quenstedt, 1930. One of these, L. melvilleana n. sp., is described and the other consists of the two species named previously by Anelli et al. (2006), which are demonstrated to be synonymous and are assigned to the species Leionucula frigida (Anelli, Rocha-Campos, Santos, Perinotto & Quaglio 2006). This assemblage, dominated by protobranchs (89% of specimens), is a typical fauna of offshore soft substrates, with a few specimens transported from hard substrates nearby. The diversity of Nuculidae has decreased in the Antarctic region through the Cenozoic.