2 resultados para Kevlar aramide fiber-thermoplastic polyurethane (TPU)

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a study on the potential use of coconut fiber as material to produce particleboards, with two different densities (0.8 g/cm(3) and 1.0 g/cm3), using castor oil-based polyurethane adhesive and urea-formaldehyde. The quality of the product that can be produced by industry was evaluated according to the normative NBR 14.810:2006, where density, thickness swell (TS), absorption, modulus of elasticity (MOE), modulus of rupture (MOR) in static bending and internal bond (IB) were determined. From the results, there was a decrease in TS and increase in MOR of coconut fiber panels with polyurethane resin panels compared with coconut fiber and resin urea-formaldehyde. Scanning microscopy electronic images (SEM) indicated that castor oil-based polyurethane adhesive occupies the gaps between the particles, a factor that contributes to improved physical and mechanical properties of the panels. The assessment of durability through accelerated aging tests shows that panels protected with waterproofing material can be used in environments that have contact with moisture. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thermoplastic starch (TPS) from industrial non-modified corn starch was obtained and reinforced with natural strands. The influence of the reinforcement on physical-chemical properties of the composites obtained by melt processing has been analyzed. For this purpose, composites reinforced with different amounts of either sisal or hemp strands have been prepared and evaluated in terms of crystallinity, water sorption, thermal and mechanical properties. The results showed that the incorporation of sisal or hemp strands caused an increase in the glass transition temperature (T-g) of the TPS as determined by DMTA. The reinforcement also increased the stiffness of the material, as reflected in both the storage modulus and the Young's modulus. Intrinsic mechanical properties of the reinforcing fibers showed a lower effect on the final mechanical properties of the materials than their homogeneity and distribution within the matrix. Additionally, the addition of a natural latex plasticizer to the composite decreased the water absorption kinetics without affecting significantly the thermal and mechanical properties of the material. (c) 2012 Elsevier Ltd. All rights reserved.