7 resultados para KRYLOV BASIS DIAGONALIZATION METHOD (KBDM)
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
In this work we report results of continuous wave (CW) electron paramagnetic resonance (EPR) spectroscopy of vanadium oxide nanotubes. The observed EPR spectra are composed of a weak well-resolved spectrum of isolated V4+ ions on top of an intense and broad structure-less line shape, attributed to spin-spin exchanged V4+ clusters. With the purpose to deconvolute the structured weak spectrum from the composed broad line, a new approach based on the Krylov basis diagonalization method (KBDM) is introduced. It is based on the discrimination between broad and sharp components with respect to a selectable threshold and can be executed with few adjustable parameters, without the need of a priori information on the shape and structure of the lines. This makes the method advantageous with respect to other procedures and suitable for fast and routine spectral analysis, which, in conjunction with simulation techniques based on the spin Hamiltonian parameters, can provide a full characterization of the EPR spectrum. Results demonstrate and characterize the coexistence of two V4+ species in the nanotubes and show good progress toward the goal of obtaining high fidelity deconvoluted spectra from complex signals with overlapping broader line shapes. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Proton nuclear magnetic resonance (H-1 NMR) spectroscopy for detection of biochemical changes in biological samples is a successful technique. However, the achieved NMR resolution is not sufficiently high when the analysis is performed with intact cells. To improve spectral resolution, high resolution magic angle spinning (HR-MAS) is used and the broad signals are separated by a T-2 filter based on the CPMG pulse sequence. Additionally, HR-MAS experiments with a T-2 filter are preceded by a water suppression procedure. The goal of this work is to demonstrate that the experimental procedures of water suppression and T-2 or diffusing filters are unnecessary steps when the filter diagonalization method (FDM) is used to process the time domain HR-MAS signals. Manipulation of the FDM results, represented as a tabular list of peak positions, widths, amplitudes and phases, allows the removal of water signals without the disturbing overlapping or nearby signals. Additionally, the FDM can also be used for phase correction and noise suppression, and to discriminate between sharp and broad lines. Results demonstrate the applicability of the FDM post-acquisition processing to obtain high quality HR-MAS spectra of heterogeneous biological materials.
Resumo:
The generator coordinate method was implemented in the unrestricted Hartree-Fock formalism. Weight functions were built from Gaussian generator functions for 1s, 2s, and 2p orbitals of carbon and oxygen atoms. These weight functions show a similar behavior to those found in the generator coordinate restricted Hartree-Fock method, i.e., they are smooth, continuous, and tend to zero in the limits of integration. Moreover, the weight functions obtained are different for spin-up and spin-down electrons what is a result from spin polarization. (C) 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012
Resumo:
There is a continuous search for theoretical methods that are able to describe the effects of the liquid environment on molecular systems. Different methods emphasize different aspects, and the treatment of both the local and bulk properties is still a great challenge. In this work, the electronic properties of a water molecule in liquid environment is studied by performing a relaxation of the geometry and electronic distribution using the free energy gradient method. This is made using a series of steps in each of which we run a purely molecular mechanical (MM) Monte Carlo Metropolis simulation of liquid water and subsequently perform a quantum mechanical/molecular mechanical (QM/MM) calculation of the ensemble averages of the charge distribution, atomic forces, and second derivatives. The MP2/aug-cc-pV5Z level is used to describe the electronic properties of the QM water. B3LYP with specially designed basis functions are used for the magnetic properties. Very good agreement is found for the local properties of water, such as geometry, vibrational frequencies, dipole moment, dipole polarizability, chemical shift, and spin-spin coupling constants. The very good performance of the free energy method combined with a QM/MM approach along with the possible limitations are briefly discussed.
Resumo:
The molecular method is used to obtain nuclear electric quadrupole moment (NQM) values for hafnium through electric field gradients (EFGs) at this nucleus in HfO and HfS. Dirac-Coulomb calculations with the Coupled Cluster approach, DC-CCSD (T) and DC-CCSD-T, were carried out to achieve the most accurate estimates of these EFGs. Higher order corrections are also added. Hence, the most reliable values for 177Hf and 179Hf determined here are 3319(33) and 3750(37) mbarn, respectively, in nice accordance with the best currently accepted NQMs for this element. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Abstract Background To establish the correlation between quantitative analysis based on B-mode ultrasound images of vulnerable carotid plaque and histological examination of the surgically removed plaque, on the basis of a videodensitometric digital texture characterization. Methods Twenty-five patients (18 males, mean age 67 ± 6.9 years) admitted for carotid endarterectomy for extracranial high-grade internal carotid artery stenosis (≥ 70% luminal narrowing) underwent to quantitative ultrasonic tissue characterization of carotid plaque before surgery. A computer software (Carotid Plaque Analysis Software) was developed to perform the videodensitometric analysis. The patients were divided into 2 groups according to symptomatology (group I, 15 symptomatic patients; and group II, 10 patients asymptomatic). Tissue specimens were analysed for lipid, fibromuscular tissue and calcium. Results The first order statistic parameter mean gray level was able to distinguish the groups I and II (p = 0.04). The second order parameter energy also was able to distinguish the groups (p = 0,02). A histological correlation showed a tendency of mean gray level to have progressively greater values from specimens with < 50% to >75% of fibrosis. Conclusion Videodensitometric computer analysis of scan images may be used to identify vulnerable and potentially unstable lipid-rich carotid plaques, which are less echogenic in density than stable or asymptomatic, more densely fibrotic plaques.
Resumo:
Background: We aimed to establish values and parameters using multislice reconstruction in axial computerized tomography (CT) in order to quantify the erosion of the glenoid cavity in cases of shoulder instability. Methods: We studied two groups using CT. Group I had normal subjects and Group II had patients with shoulder instability. We measured values of the vertical segment, the superior horizontal, medial and inferior segments, and also calculated the ratio of the horizontal superior and inferior segments of the glenoid cavity in both normal subjects and those with shoulder instability. These variables were recorded during arthroscopy for cases with shoulder instability. Results The mean values were 40.87 mm, 17.86 mm, 26.50 mm, 22.86 mm and 0.79 for vertical segment, the superior horizontal, medial and inferior segments, and the ratio between horizontal superior and inferior segments of the glenoid cavity respectively, in normal subjects. For subjects with unstable shoulders the mean values were 37.33 mm, 20.83 mm, 23.07 mm and 0.91 respectively. Arthroscopic measurements yielded an inferior segment value of 24.48 mm with a loss of 2.39 mm (17.57%). The ratio between the superior and inferior segments of the glenoid cavity was 0.79. This value can be used as a normative value for evaluating degree of erosion of the anterior border of the glenoid cavity. However, values found using CT should not be used on a comparative basis with values found during arthroscopy. Conclusions: Computerized tomographic measurements of the glenoid cavity yielded reliable values consistent with those in the literature.