9 resultados para Joints (structural components)
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
There are several techniques to characterize the elastic modulus of wood and those currently using the natural frequencies of vibration stand out as they are non-destructive techniques, producing results that can be repeated and compared over time. This study reports on the effectiveness of the testing methods based on the natural frequencies of vibration versus static bending to obtain the elastic properties of reforested structural wood components usually employed in civil construction. The following components were evaluated: 24 beams of Eucalyptus sp. with nominal dimensions (40 x 60 x 2.000 mm) and 14 beams of Pinus oocarpa with nominal dimensions (45 x 90 x 2.300 mm) both without treatment; 30 boards with nominal dimensions (40 x 240 x 2.010 mm) and 30 boards with nominal dimensions (40 x 240 x 3.050 mm), both of Pinus oocarpa and with chromate copper arsenate (CCA) preservative treatment. The results obtained in thiswork show good correlation when compared to the results obtained by the static bending mechanical method, especially when applying the natural frequency of longitudinal vibration. The use of longitudinal frequency was reliable and practical, therefore recommended for determining the modulus of elasticity of wood structural elements. It was also found that no specific support is needed for the specimens using the longitudinal frequency, as well as no previous calibrations, reducing the execution time and enabling to test many samples.
Resumo:
Masonry spandrels together with shear walls are structural components of a masonry building subjected to lateral loads. Shear walls are the main components of this structural system, even if masonry spandrels are the elements that ensure the connection of shear wall panels and the distribution of stresses through the masonry piers. The use of prefabricated truss type bars in the transversal and longitudinal directions is usually considered a challenge, even if the simplicity of the applications suggested here alleviate some of the possible difficulties. This paper focus on the experimental behavior of masonry spandrels reinforced with prefabricated trusses, considering different possibilities for the arrangement of reinforcement and blocks. Reinforced spandrels with three and two hollow cell concrete blocks and with different reinforcement ratios have been built and tested using a four and three point loading test configuration. Horizontal bed joint reinforcement increased the capacity of deformation as well as the ultimate load, leading to ductile responses. Vertical reinforcement increased the shear strength of the masonry spandrels and its distribution play a central role on the shear behavior. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A specific manufacturing process to obtain continuous glass fiber-reinforced RIFE laminates was studied and some of their mechanical properties were evaluated. Young's modulus and maximum strength were measured by three-point bending test and tensile test using the Digital Image Correlation (DIC) technique. Adhesion tests, thermal analysis and microscopy were used to evaluate the fiber-matrix adhesion, which is very dependent on the sintering time. The composite material obtained had a Young's modulus of 14.2 GPa and ultimate strength of 165 MPa, which corresponds to approximately 24 times the modulus and six times the ultimate strength of pure RIFE. These results show that the RIFE composite, manufactured under specific conditions, has great potential to provide structural parts with a performance suitable for application in structural components. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study was to evaluate the phases of sexual development and spermatogenesis of Spix's yellow-toothed cavy (Galea spixii) based on analyses of the structural components of the testes. The testes of animals from 0 to 150 days of age were collected by orchiectomy, weighed, and processed for analysis by light microscopy. At 45 days of age, spermatozoa were seen in the tubular lumen. Spermatogenesis was not established in animals from 45 to 150 days of age. The stages of sexual development may be classified into the following phases: from birth to the age of 15 days (immature); 30 days of age (prepubertal); 45-105 days of age (pubertal); and 120 and 150 days of age (postpubertal). This is the first study to address the male reproductive biology of Spix's yellow-toothed cavy.
Resumo:
Existem diversas técnicas para caracterização do módulo de elasticidade de madeiras e, dentre as atualmente empregadas, destacam-se aquelas que utilizam as frequências naturais de vibração, por serem técnicas não destrutivas e, portanto, apresentarem resultados que podem ser repetidos e comparados ao longo do tempo. Este trabalho teve como objetivo avaliar a eficácia, dos métodos de ensaios baseados nas frequências naturais de vibração comparando-os aos resultados obtidos na flexão estática na obtenção das propriedades elásticas em peças estruturais de madeira de reflorestamento que são usualmente empregadas na construção civil. Foram avaliadas 24 vigas de Eucalyptus sp. com dimensões nominais (40 x 60 x 2.000 mm) e 14 vigas de Pinus oocarpa com dimensões nominais (45 x 90 x 2.300 mm), ambas sem tratamento; 30 pranchas com dimensões nominais (40 x 240 x 2.010 mm) e 30 pranchas com dimensões nominais (40 x 240 x 3.050 mm), ambas de Pinnus oocarpa e com tratamento preservativo à base de Arseniato de Cobre Cromatado - CCA. Os resultados obtidos apresentaram boa correlação quando comparados aos resultados obtidos pelo método mecânico de flexão estática, especialmente quando empregada a frequência natural de vibração longitudinal. O emprego da frequência longitudinal mostrou-se confiável e prático, portanto recomendada para a determinação do módulo de elasticidade de peças estruturais de madeira. Verificou-se ainda que, empregando a frequência longitudinal, não há necessidade de um suporte específico para os corpos de prova ou calibrações prévias, reduzindo assim o tempo de execução e favorecendo o ensaio de grande quantidade de amostras.
Resumo:
A comparative proteomic approach was performed to identify differentially expressed proteins in plastids at three stages of tomato (Solanum lycopersicum) fruit ripening (mature-green, breaker, red). Stringent curation and processing of the data from three independent replicates identified 1,932 proteins among which 1,529 were quantified by spectral counting. The quantification procedures have been subsequently validated by immunoblot analysis of six proteins representative of distinct metabolic or regulatory pathways. Among the main features of the chloroplast-to-chromoplast transition revealed by the study, chromoplastogenesis appears to be associated with major metabolic shifts: (1) strong decrease in abundance of proteins of light reactions (photosynthesis, Calvin cycle, photorespiration) and carbohydrate metabolism (starch synthesis/degradation), mostly between breaker and red stages and (2) increase in terpenoid biosynthesis (including carotenoids) and stress-response proteins (ascorbate-glutathione cycle, abiotic stress, redox, heat shock). These metabolic shifts are preceded by the accumulation of plastid-encoded acetyl Coenzyme A carboxylase D proteins accounting for the generation of a storage matrix that will accumulate carotenoids. Of particular note is the high abundance of proteins involved in providing energy and in metabolites import. Structural differentiation of the chromoplast is characterized by a sharp and continuous decrease of thylakoid proteins whereas envelope and stroma proteins remain remarkably stable. This is coincident with the disruption of the machinery for thylakoids and photosystem biogenesis (vesicular trafficking, provision of material for thylakoid biosynthesis, photosystems assembly) and the loss of the plastid division machinery. Altogether, the data provide new insights on the chromoplast differentiation process while enriching our knowledge of the plant plastid proteome.
Resumo:
The aim of this study was to evaluate extracellular matrix components in articular cartilage, ligaments and synovia in an experimental model of diabetes. Young Wistar rats were divided into a streptozotocin-induced (STZ; 35 mg/kg) diabetic group (DG; n=15) and a control group (CG; n=15). Weight, blood glucose and plasma anti-carboxymethyllysine were measured 70 days after STZ infusions. Knee joints, patellar ligaments, and lateral and medial collateral ligaments were isolated and stained with hematoxylineosin and Picrosirius. The total collagen content was determined by morphometry. Immunofluorescence was employed to evaluate types I, III, and V collagen in ligaments and synovial tissues and types II and XI collagen in cartilage. Results: Higher blood glucose levels and plasma anti-carboxymethyllysine were observed in DG rats when compared to those in CG rats. The final weight was significantly lower in the DG rats than in the CG rats. Histomorphometric evaluation depicted a small quantity of collagen fibers in ligaments and articular cartilage in DG rats, as well as increased collagen in synovial tissue. There was a decrease in cartilage proteoglycans in DG rats when compared with CG rats. Immunofluorescence staining revealed an increase of collagen III and V in ligaments, collagen XI in cartilage, and collagen I in synovial tissue of DG rats compared with CG rats. Conclusion: The ligaments, cartilage and synovia are highly affected following STZ-induced diabetes in rats, due the remodeling of collagen types in these tissues. This process may promote the degradation of the extracellular matrix, thus compromising joint function. Our data may help to better understand the pathogenesis of joint involvement related to diabetes.
Resumo:
Brossi P.M., Baccarin R.Y.A. & Massoco C.O. 2012 Do blood components affect the production of reactive oxygen species (ROS) by equine synovial cells in vitro? Pesquisa Veterinaria Brasileira 32(12):1355-1360. Departamento de Clinica Medica, Faculdade de Medicina Veterinaria e Zootecnia, Universidade de Sao Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, Butanta, Sao Paulo, SP 5508-210, Brazil. E-mail: baccarin@ usp.br Blood-derived products are commonly administered to horses and humans to treat many musculoskeletal diseases, due to their potential antioxidant and anti-inflammatory effects. Nevertheless, antioxidant effects have never been shown upon horse synovial fluid cells in vitro. If proved, this could give a new perspective to justify the clinical application of blood-derived products. The aim of the present study was to investigate the antioxidant effects of two blood-derived products - plasma (unconditioned blood product - UBP) and a commercial blood preparation (conditioned blood product - CBP)(4) - upon stimulated equine synovial fluid cells. Healthy tarsocrural joints (60) were tapped to obtain synovial fluid cells; these cells were pooled, processed, stimulated with lipopolysaccharide (LPS) or phorbol 12-myristate 13-acetate (PMA), and evaluated by flow cytometry for the production of reactive oxygen species (ROS). Upon addition of any blood-derived product here used - UBP and CBP - there was a significant decrease in the oxidative burst of synovial fluid cells (P<0.05). There was no difference between UBP and CBP effects. In conclusion, treatment of stimulated equine synovial cells with either UBP or CBP efficiently restored their redox equilibrium.
Resumo:
This work provides a numerical and experimental investigation of fatigue crack growth behavior in steel weldments including crack closure effects and their coupled interaction with weld strength mismatch. A central objective of this study is to extend previously developed frameworks for evaluation of crack clo- sure effects on FCGR to steel weldments while, at the same time, gaining additional understanding of commonly adopted criteria for crack closure loads and their influence on fatigue life of structural welds. Very detailed non-linear finite element analyses using 3-D models of compact tension C ( T ) fracture spec- imens with center cracked, square groove welds provide the evolution of crack growth with cyclic stress intensity factor which is required for the estimation of the closure loads. Fatigue crack growth tests con- ducted on plane-sided, shallow-cracked C ( T ) specimens provide the necessary data against which crack closure effects on fatigue crack growth behavior can be assessed. Overall, the present investigation pro- vides additional support for estimation procedures of plasticity-induced crack closure loads in fatigue analyses of structural steels and their weldments