7 resultados para Isotopic-labeling
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Stable isotopes, tritium, radium isotopes, radon, trace elements and nutrients data were collected during two sampling campaigns in the Ubatuba coastal area (south-eastern Brazil) with the aim of investigating submarine groundwater discharge (SGD) in the region. The isotopic composition (delta D, delta(18)O, (3)H) of submarine waters was characterised by significant variability and heavy isotope enrichment. The stable isotopes and tritium data showed good separation of groundwater and seawater groups. The contribution of groundwater in submarine waters varied from a few % to 17%. Spatial distribution of (222)Rn activity concentration in surface seawater revealed changes between 50 and 200 Bq m(-3) which were in opposite relationship with observed salinities. Time series measurements of (222)Rn activity concentration in Flamengo Bay (from 1 to 5 kBq m(-3)), obtained by in situ underwater gamma-spectrometry showed a negative correlation between the (222)Rn activity concentration and tide/salinity. This may be caused by sea level changes as tide effects induce variations of hydraulic gradients, which increase (222)Rn concentration during lower sea level, and opposite, during high tides where the (222)Rn activity concentration is smaller. The estimated SGD fluxes varied during 22-26 November between 8 and 40 cm d(-1), with an average value of 21 cm d(-1) (the unit is cm(3)/cm(2) per day). The radium isotopes and nutrient data showed scattered distributions with offshore distance and salinity. which implies that in a complex coast with many small bays and islands, the area has been influenced by local currents and groundwater-seawater mixing. SGD in the Ubatuba area is fed by coastal contaminated groundwater and re-circulated seawater (with small admixtures of groundwater). which claims for potential environmental concern with implications on the management of freshwater resources in the region. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Whole-rock geochemistry, combined with Sr-Nd isotopic composition of pelitic sedimentary rocks, have been considered to be useful parameters to estimate not only their provenance but also to make inferences about their depositional environment as well as the weathering processes they have been through. The basal sedimentary units of the basins of the northeastern Brazilian continental margin, particularly those of the pre-rift sequence, have been subject of interest of studies based on chemical and isotopic data, since they lack fossil content to establish their age and, therefore, stratigraphic correlations are difficult. The major and trace element contents as well as Sr-Nd isotopic compositions of whole-rock shale samples from five outcrops attributed to the pre-rift supersequence of the Camamu Basin were analyzed with the purpose of characterizing and obtaining further information that would allow a better correlation between the sites studied. The geochemical data suggest that the rocks exposed in the studied outcrops are part of the same sedimentary unit and that they might be correlated to the Capianga Member of the Alianca Formation of the Reconcavo Basin, exposed to the north of the Camamu Basin. The chemical index of alteration (CIA) suggests conditions associated with a humid tropical/subtropical climate at the time of deposition. Nd isotopic compositions indicate provenance from the Paleoproterozoic rocks of the Sao Francisco craton. The results presented here, therefore, show that the combined use of chemical and isotopic analyses may be of great interest to characterize and correlate lithologically homogeneous clastic sedimentary sequences. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Collateral circulation, defined as the supplementary vascular network that maintains cerebral blood flow (CBF) when the main vessels fail, constitutes one important defense mechanism of the brain against ischemic stroke. In the present study, continuous arterial spin labeling (CASL) was used to quantify CBF and obtain perfusion territory maps of the major cerebral arteries in spontaneously hypertensive rats (SHRs) and their normotensive Wistar-Kyoto (WKY) controls. Results show that both WKY and SHR have complementary, yet significantly asymmetric perfusion territories. Right or left dominances were observed in territories of the anterior (ACA), middle and posterior cerebral arteries, and the thalamic artery. Magnetic resonance angiography showed that some of the asymmetries were correlated with variations of the ACA. The leptomeningeal circulation perfusing the outer layers of the cortex was observed as well. Significant and permanent changes in perfusion territories were obtained after temporary occlusion of the right middle cerebral artery in both SHR and WKY, regardless of their particular dominance. However, animals with right dominance presented a larger volume change of the left perfusion territory (23 +/- 9%) than animals with left dominance (7 +/- 5%, P<0.002). The data suggest that animals with contralesional dominance primarily safeguard local CBF values with small changes in contralesional perfusion territory, while animals with ipsilesional dominance show a reversal of dominance and a substantial increase in contralesional perfusion territory. These findings show the usefulness of CASL to probe the collateral circulation.
Resumo:
CHEMICAL CHANGES AND ZINC PHYTOAVAILABILITY IN SEWAGE SLUDGE-AMENDED SOIL ESTIMATED BY THE ISOTOPIC METHOD. Zn availability in Red Latossol (Rhodic Ferralsol) of different pH amended with different rates of sewage sludge was studied by the isotopic Zn-65 L value method. Soil chemical properties were found to be altered by SS addition. Zn concentration and Zn derived from SS (ZnpfSS) in plant, and Zn phytoavailability (L value), were increased with increasing SS rates. The linear correlation coefficient of plant Zn with SS rates and with L value was significant at 1% probability. The L value proved an efficient method for predicting Zn phytoavailability in sewage sludge-amended soil with different pH under the soil conditions studied.
Resumo:
We report the first tungsten isotopic measurements in stardust silicon carbide (SiC) grains recovered from the Murchison carbonaceous chondrite. The isotopes (182,183,184,186)Wand (179,180)Hf were measured on both an aggregate (KJB fraction) and single stardust SiC grains (LS+ LU fraction) believed to have condensed in the outflows of low-mass carbon-rich asymptotic giant branch (AGB) stars with close-to-solar metallicity. The SiC aggregate shows small deviations from terrestrial (= solar) composition in the (182)W/(184)Wand (183)W/(184)Wratios, with deficits in (182)W and (183)W with respect to (184)W. The (186)W/(184)W ratio, however, shows no apparent deviation from the solar value. Tungsten isotopic measurements in single mainstream stardust SiC grains revealed lower than solar (182)W/(184)W, (183)W/(184)W, and (186)W/(184)W ratios. We have compared the SiC data with theoretical predictions of the evolution of W isotopic ratios in the envelopes of AGB stars. These ratios are affected by the slow neutron-capture process and match the SiC data regarding their (182)W/(184)W, (183)W/(184)W, and (179)Hf/(180)Hf isotopic compositions, although a small adjustment in the s-process production of (183)W is needed in order to have a better agreement between the SiC data and model predictions. The models cannot explain the (186)W/(184)W ratios observed in the SiC grains, even when the current (185)W neutron-capture cross section is increased by a factor of two. Further study is required to better assess how model uncertainties (e. g., the formation of the (13)C neutron source, the mass-loss law, the modeling of the third dredge-up, and the efficiency of the (22)Ne neutron source) may affect current s-process predictions.
Resumo:
This work combines structural and geochronological data to improve our understanding of the mechanical behaviour of continental crust involving large amount of magma or partially melted material in an abnormally hot collisional belt. We performed a magnetic and geochronological (U/Pb) study on a huge tonalitic batholith from the Neoproterozoic Aracual belt of East Brazil to determine the strain distribution through space and time. Anisotropy of magnetic susceptibility, combined with rock magnetism investigations, supports that the magnetic fabric is a good proxy of the structural fabric. Field measurements together with the magnetic fabrics highlight the presence in the batholith of four domains characterized by contrasted magmatic flow patterns. The western part is characterized by a gently dipping, orogen-parallel (similar to NS) magmatic foliation that bears down-dip lineations, in agreement with westward thrusting onto the Sao Francisco craton. Eastward, the magmatic foliation progressively turns sub-vertical with a lineation that flips from sub-horizontal to sub-vertical over short distances. This latter domain involves an elongated corridor in which the magmatic foliation is sub-horizontal and bears an orogen-parallel lineation. Finally the fourth, narrow domain displays sub-horizontal lineations on a sub-vertical magmatic foliation oblique (similar to N150 degrees E) to the trend of the belt. U/Pb dating of zircons from the various domains revealed homogeneity in age for all samples. This, together with the lack of solid-state deformation suggests that: 1) the whole batholith emplaced during a magmatic event at similar to 580 Ma, 2) the deformation occurred before complete solidification. and 3) the various fabrics are roughly contemporaneous. The complex structural pattern mapped in the studied tonalitic batholith suggests a 3D deformation of a slowly cooling, large magmatic body and its country rock. We suggest that the development of the observed 3D flow field was promoted by the low viscosity of the middle crust that turned gravitational force as an active tectonic force combining with the East-West convergence between the Sao Francisco and Congo cratons. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Different lead sources were identified in a large uranium tailings deposit (5Mton) in the Central Region of Portugal using lead isotopic ratios obtained by ICP-QMS. These ratios helped to clarify the different sources of Pb within the tailings deposit and the impact of the tailings on the surroundings. Ten depth profiles were used for isotopic characterization of the tailings deposit; the lead background signature was evaluated in seven regional rocks (granites) and was defined as being 28 +/- 1 mg kg(-1) for Pb bulk concentration and with isotopic ratios of 1.264(2) for Pb-206/Pb-207 and 1.962(7) for Pb-208/Pb-206. In order to understand Pb isotope distribution within the tailings deposit, simple mixing/mass balance models were used to fit experimental data, involving: (1) the background component; (2) uranium ores (pitchblende) characterized by the ratios Pb-206/Pb-207 of 1.914(3) and Pb-208/Pb-206 of 1.235(2); and (3) an unknown Pb source (named 'Fonte 5') characterized by the ratios Pb-206/Pb-207 of 3.079(7) and Pb-208/Pb-206 of 0.715(1). This unknown source showed high radiogenic ratios found in the water of some tailings depth profiles located in a very specific position in the dump. In terms of isotopic characterization, 69% of the deposit material resulted from the background source, 25% from uranium minerals and only 6% from other uranium mines in the region. Finally, the environment impact revealed that the pollution was focused only in the beginning of the stream and not in the surroundings, nor in the groundwater system. The lead in the water was found only in colloidal form with a clear pitchblende signature. Those data revealed possible remobilization phenomena along the bedside and margins of the watercourse.