15 resultados para Isis (Egyptian deity)
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The aim of the present study was to investigate the participation of the sympathetic nervous system (SNS) in the control of glycerol-3-P (G3P) generating pathways in white adipose tissue (WAT) of rats in three situations in which the plasma insulin levels are low. WAT from 48 h fasted animals, 3 day-streptozotocin diabetic animals and high-protein, carbohydrate-free (HP) diet-fed rats was surgical denervated and the G3P generation pathways were evaluated. Food deprivation, diabetes and the HP diet provoke a marked decrease in the rate of glucose uptake and glycerokinase (GyK) activity, but a significant increase in the glyceroneogenesis, estimated by the phosphoenolpyruvate carboxykinase (PEPCK) activity and the incorporation of 1-[C-14]-pyruvate into glycerol-TAG. The denervation provokes a reduction (similar to 70%) in the NE content of WAT in fasted, diabetic and HP diet-fed rats. The denervation induced an increase in WAT glucose uptake of fed, fasted, diabetic and HP diet-fed rats (40%, 60%, 3.2 fold and 35%, respectively). TAG-glycerol synthesis from pyruvate was reduced by denervation in adipocytes of fed (58%) and fasted (36%), saline-treated (58%) and diabetic (23%), and HP diet-fed rats (11%). In these same groups the denervation reduced the PEPCK mRNA expression (75%-95%) and the PEPCK activity (35%-60%). The denervation caused a similar to 35% decrease in GyK activity of control rats and a further similar to 35% reduction in the already low enzyme activity of fasted, diabetic and HP diet-fed rats. These data suggest that the SNS plays an important role in modulating G3P generating pathways in WAT, in situations where insulin levels are low. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Two experiments in vitro were conducted to evaluate four Egyptian forage legume browses, i.e., leaves of prosopis (Prosopis juliflora), acacia (Acacia saligna), atriplex (A triplex halimus), and leucaena (Leucaena leucocephala), in comparison with Tifton (Cynodon sp.) grass hay for their gas production, methanogenic potential, and ruminal fermentation using a semi-automatic system for gas production (first experiment) and for ruminal and post ruminal protein degradability (second experiment). Acacia and leucaena showed pronounced methane inhibition compared with Tifton, while prosopis and leucaena decreased the acetate:propionate ratio (P<0.01). Acacia and leucaena presented a lower (P<0.01) ruminal NH3-N concentration associated with the decreasing (P<0.01) ruminal protein degradability. Leucaena, however, showed higher (P<0.01) intestinal protein digestibility than acacia. This study suggests that the potential methanogenic properties of leguminous browses may be related not only to tannin content, but also to other factors.
Resumo:
Studies have shown that platelet APP ratio (representing the percentage of 120-130 kDa to 110 kDa isoforms of the amyloid precursor protein) is reduced in patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD). In the present study, we sought to determine if baseline APP ratio predicts the conversion from MCI to AD dementia after 4 years of longitudinal assessment. Fifty-five older adults with varying degrees of cognitive impairment (34 with MCI and 21 with AD) were assessed at baseline and after 4 years. MCI patients were re-classified according to the conversion status upon follow-up: 25 individuals retained the diagnostic status of MCI and were considered as stable cases (MCI-MCI); conversely, in nine cases the diagnosis of dementia due to AD was ascertained. The APP ratio (APPr) was determined by the Western blot method in samples of platelets collected at baseline. We found a significant reduction of APPr in MCI patients who converted to dementia upon follow-up. These individuals had baseline APPr values similar to those of demented AD patients. The overall accuracy of APPr to identify subjects with MCI who will progress to AD was 0.74 +/- A 0.10, p = 0.05. The cut-off of 1.12 yielded a sensitivity of 75 % and a specificity of 75 %. Platelet APPr may be a surrogate marker of the disease process in AD, with potential implications for the assessment of abnormalities in the APP metabolism in patients with and at risk for dementia. However, diagnostic accuracy was relatively low. Therefore, studies in larger samples are needed to determine whether APPr may warrant its use as a biomarker to support the early diagnosis of AD.
Resumo:
Goncalves DA, Silveira WA, Lira EC, Gra a FA, Paula-Gomes S, Zanon NM, Kettelhut IC, Navegantes LC. Clenbuterol suppresses proteasomal and lysosomal proteolysis and atrophy-related genes in denervated rat soleus muscles independently of Akt. Am J Physiol Endocrinol Metab 302: E123-E133, 2012. First published September 27, 2011; doi:10.1152/ajpendo.00188.2011.-Although it is well known that administration of the selective beta(2)-adrenergic agonist clenbuterol (CB) protects muscle following denervation (DEN), the underlying molecular mechanism remains unclear. We report that in vivo treatment with CB (3 mg/kg sc) for 3 days induces antiproteolytic effects in normal and denervated rat soleus muscle via distinct mechanisms. In normal soleus muscle, CB treatment stimulates protein synthesis, inhibits Ca(2+)-dependent proteolysis, and increases the levels of calpastatin protein. On the other hand, the administration of CB to DEN rats ameliorates the loss of muscle mass, enhances the rate of protein synthesis, attenuates hyperactivation of proteasomal and lysosomal proteolysis, and suppresses the transcription of the lysosomal protease cathepsin L and of atrogin-1/MAFbx and MuRF1, two ubiquitin (Ub) ligases involved in muscle atrophy. These effects were not associated with alterations in either IGF-I content or Akt phosphorylation levels. In isolated muscles, CB (10(-6) M) treatment significantly attenuated DEN-induced overall proteolysis and upregulation in the mRNA levels of the Ub ligases. Similar responses were observed in denervated muscles exposed to 6-BNZ-cAMP (500 mu M), a PKA activator. The in vitro addition of triciribine (10 mu M), a selective Akt inhibitor, did not block the inhibitory effects of CB on proteolysis and Ub ligase mRNA levels. These data indicate that short-term treatment with CB mitigates DEN-induced atrophy of the soleus muscle through the stimulation of protein synthesis, downregulation of cathepsin L and Ub ligases, and consequent inhibition of lysosomal and proteasomal activities and that these effects are independent of Akt and possibly mediated by the cAMP/PKA signaling pathway.
Resumo:
We have previously shown that a high-protein, carbohydrate-free diet can decrease the production of glycerol-3-phosphate (G3P) from glucose and increase glyceroneogenesis in both brown (BAT) and epididymal (EAT) adipose tissue. Here, we utilized an in-vivo approach to examine the hypothesis that there is reciprocal regulation in the G3P synthesis from glucose (via glycolysis) and glyceroneogenesis in BAT, EAT and liver of fasted rats and cafeteria diet-fed rats. Glyceroneogenesis played a prominent role in the generation of G3P in the liver (similar to 70 %) as well as in BAT and EAT (similar to 80 %) in controls rats. The cafeteria diet induced an increase in the total glyceride-glycerol synthesis and G3P synthesis from glucose and a decrease in glyceroneogenesis in BAT; this diet did not affect either the total glyceride-glycerol synthesis or G3P generation from glyceroneogenesis or glycolysis in the liver or EAT. Fasting induced an increase in total glyceride-glycerol synthesis and glyceroneogenesis and a decrease in G3P synthesis from glucose in the liver but did not affect either the total glyceride-glycerol synthesis or G3P synthesis from glyceroneogenesis in BAT and EAT, despite a reduction in glycolysis in these tissues. These data demonstrate that reciprocal changes in the G3P generation from glucose and from glyceroneogenesis in the rat liver and BAT occur only when the synthesis of glycerides-glycerol is increased. Further, our data suggest that this increase may be essential for the systemic recycling of fatty acids by the liver from fasted rats and for the maintenance of the thermogenic capacity of BAT from cafeteria diet-fed rats.
Resumo:
Soil microcosms contaminated with crude oil with or without chromium and copper were monitored over a period of 90 days for microbial respiration, biomass, and for dehydrogenase, lipase, acid phosphatase, and arylsulfatase activities. In addition, the community structure was followed by enumerating the total heterotrophic and oil-degrading viable bacteria and by performing a denaturing gradient gel electrophoresis (DGGE) of the PCR amplified 16S rDNA. A significant difference was observed for biochemical activities and microbial community structures between the microcosms comprised of uncontaminated soil, soil contaminated with crude oil and soil contaminated with crude oil and heavy metals. The easily measured soil enzyme activities correlated well with microbial population levels, community structures and rates of respiration (CO2 production). The estimation of microbial responses to soil contamination provides a more thorough understanding of the microbial community function in contaminated soil, in situations where technical and financial resources are limited and may be useful in addressing bioremediation treatability and effectiveness. (C) 2012 Published by Elsevier Ltd.
Resumo:
A low-protein, high-carbohydrate (LPHC) diet for 15 days increased the lipid content in the carcass and adipose tissues of rats. The aim of this work was to investigate the mechanisms of this lipid increase in the retroperitoneal white adipose tissue (RWAT) of these animals. The LPHC diet induced an approximately two- and tenfold increase in serum corticosterone and TNF-alpha, respectively. The rate of de novo fatty acid (FA) synthesis in vivo was reduced (50%) in LPHC rats, and the lipoprotein lipase activity increased (100%). In addition, glycerokinase activity increased (60%), and the phosphoenolpyruvate carboxykinase content decreased (27%). Basal [U-C-14]-glucose incorporation into glycerol-triacylglycerol did not differ between the groups; however, in the presence of insulin, [U-C-14]-glucose incorporation increased by 124% in adipocytes from only control rats. The reductions in IRS1 and AKT content as well as AKT phosphorylation in the RWAT from LPHC rats and the absence of an insulin response suggest that these adipocytes have reduced insulin sensitivity. The increase in NE turnover by 45% and the lack of a lipolytic response to NE in adipocytes from LPHC rats imply catecholamine resistance. The data reveal that the increase in fat storage in the RWAT of LPHC rats results from an increase in FA uptake from circulating lipoproteins and glycerol phosphorylation, which is accompanied by an impaired lipolysis that is activated by NE.
Resumo:
The yrast level structure of Rn-215 has been studied by means of in-beam spectroscopy alpha-gamma-gamma coincidence techniques through the Pb-207(O-18,2 alpha 2n) reaction at 93 MeV bombarding energy, using the 8 pi GASP-ISIS spectrometer at Legnaro. New spectroscopic information has been obtained. The deduced low-lying level scheme of Rn-215 does not exhibit the alternating parity structure observed in the heavier known isotones Fr-216, Ra-217, Ac-218, and Th-219. From this result, the lightest nucleus showing evidence for octupole collectivity is Fr-216, defining the lowest-mass corner for this kind of phenomenon as N >= 129 and Z >= 87.
Resumo:
The aim of the present study was to analyse the influence of stress on pregnant rats, particularly in terms of maternal, placental and fetal weight, placental morphology and placental gene expression of the angiogenic factors Vegfa and Pgf and their receptors. The parameters were evaluated on gestation Day 20. Maternal, fetal and placental weights were statistically lower in stressed animals than controls, suggesting abnormalities in gestational physiology. Morphologically the placentas of rats subjected to stress were reduced in size and weight, with few glycogen cells and a significant increase in the number of apoptotic cells. Stress caused an increase in placental gene expression of Vegfa (P < 0.05) and a reduction in Pgf, Flt1 and Kdr expression (P < 0.05). It has been suggested that increased VEGF is associated with vasodilatation and hypotension, but in this model persistent hypertension was present. This study suggests that the limited hypotensive Vegfa response to stress-induced hypertension could result from reduced expression of Flt1/Kdr disrupting specific VEGF pathways. These findings may elucidate one of the multiple possible factors underlying how stress modulates placental physiology, and could aid the understanding of stress-induced gestational disorders.
Resumo:
Phospholipases A(2) (PLA(2)) are key enzymes in membrane metabolism. The release of fatty acids and lysophospholipids by PLA(2) activates several intra-cellular second messenger cascades that regulate a wide variety of physiological responses. The aim of the present study is to describe a radioenzymatic assay to determine the activity of three main PLA(2) subtypes in platelets, namely extracellular calcium-dependent PLA(2) (sPLA(2)) and intracellular calcium-dependent (cPLA(2)) and calcium-independent PLA(2) (iPLA(2)). The differentiation of these distinct PLA(2) subtypes was based on the enzyme substrate preference (arachdonic acid or palmitoyl acid) and calcium concentration. Our results indicate that this new assay is feasible, precise and specific to measure the activity of the aforementioned subtypes of PLA(2). Therefore, this protocol can be used to investigate modifications of PLA(2) homeostasis in distinct biological models addressing the pathophysiology of many medical and neuropsychiatric disorders such as schizophrenia and Alzheimer's disease. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Embryonic carcinoma cells are widely used models for studying the mechanisms of proliferation and differentiation occurring during early embryogenesis. We have now investigated how down-regulation of P2X2 and P2X7 receptor expression by RNA interference (RNAi) affects neural differentiation and phenotype specification of P19 embryonal carcinoma cells. Wild-type P19 embryonal carcinoma cells or cells stably expressing shRNAs targeting P2X2 or P2X7 receptor expression were induced to differentiate into neurons and glial cells in the presence of retinoic acid. Silencing of P2X2 receptor expression along differentiation promoted cell proliferation and an increase in the percentage of cells expressing glial-specific GFAP, while the presence of beta-3 tubulin-positive cells diminished at the same time. Proliferation induction in the presence of stable anti-P2X2 receptor RNAi points at a mechanism where glial proliferation is favored over growth arrest of progenitor cells which would allow neuronal maturation. Differently from the P2X2 receptor, inhibition of P2X7 receptor expression during neural differentiation of P19 cells resulted in a decrease in cell proliferation and GFAP expression, suggesting the need of functional P2X7 receptors for the progress of gliogenesis. The results obtained in this study indicate the importance of purinergic signaling for cell fate determination during neural differentiation, with P2X2 and P2X7 receptors promoting neurogenesis and gliogenesis, respectively. The shRNAs down-regulating P2X2 or P2X7 receptor gene expression, developed during this work, present useful tools for studying mechanisms of neural differentiation in other stem cell models. (C) 2012 ISDN. Published by Elsevier Ltd. All rights reserved.
Antioxidant and inflammatory aspects of lipoprotein-associated phospholipase A2 (Lp-PLA2 ): a review
Resumo:
The association of cardiovascular events with Lp-PLA2 has been studied continuously today. The enzyme has been strongly associated with several cardiovascular risk markers and events. Its discovery was directly related to the hydrolysis of the platelet-activating factor and oxidized phospholipids, which are considered protective functions. However, the hydrolysis of bioactive lipids generates lysophospholipids, compounds that have a pro-inflammatory function. Therefore, the evaluation of the distribution of Lp-PLA2 in the lipid fractions emphasized the dual role of the enzyme in the inflammatory process, since the HDL-Lp-PLA2 enzyme contributes to the reduction of atherosclerosis, while LDL-Lp-PLA2 stimulates this process. Recently, it has been verified that diet components and drugs can influence the enzyme activity and concentration. Thus, the effects of these treatments on Lp-PLA2 may represent a new kind of prevention of cardiovascular disease. Therefore, the association of the enzyme with the traditional assessment of cardiovascular risk may help to predict more accurately these diseases.
Resumo:
OBJETIVO: Avaliar a insatisfação corporal, a prática de dietas e os comportamentos de risco para transtornos alimentares em uma amostra de mães residentes no município de Santos. MÉTODOS: Foi realizado um estudo transversal, de base populacional, com 453 mães de filhos com até 10 anos de idade. As mães responderam ao Teste de Atitudes Alimentares (EAT-26), à Escala de Figuras de Stunkard e a uma questão sobre a prática atual de dietas. RESULTADOS: Das mães, 29,9% apresentaram escore positivo para os comportamentos de risco para transtornos alimentares e 21,8% estavam fazendo dieta para emagrecer no momento da entrevista. No tocante à imagem corporal, 17,5% das mães estavam satisfeitas com o seu tamanho corporal, 71,5% gostariam de diminuir seu tamanho corporal e 11,0% gostariam de aumentá-lo. Os comportamentos de risco para transtornos alimentares foram mais frequentes nas mães insatisfeitas com seus tamanhos corporais (p < 0,0001). CONCLUSÃO: A maioria das mães investigadas estava insatisfeita com os seus tamanhos corporais. A frequência de mães que praticavam dietas ou tinham comportamentos de risco para transtornos alimentares foi similar ou superior aos demais estudos nacionais, conduzidos, em sua maioria, com populações consideradas de risco, como meninas adolescentes e jovens universitárias.
Resumo:
This study reviews the literature concerning possible therapeutic approaches for spinal cord injury. Spinal cord injury is a disabling and irreversible condition that has high economic and social costs. There are both primary and secondary mechanisms of damage to the spinal cord. The primary lesion is the mechanical injury itself. The secondary lesion results from one or more biochemical and cellular processes that are triggered by the primary lesion. The frustration of health professionals in treating a severe spinal cord injury was described in 1700 BC in an Egyptian surgical papyrus that was translated by Edwin Smith; the papyrus reported spinal fractures as a ''disease that should not be treated.'' Over the last biological or pharmacological treatment method. Science is unraveling the mechanisms of cell protection and neuroregeneration, but clinically, we only provide supportive care for patients with spinal cord injuries. By combining these treatments, researchers attempt to enhance the functional recovery of patients with spinal cord injuries. Advances in the last decade have allowed us to encourage the development of experimental studies in the field of spinal cord regeneration. The combination of several therapeutic strategies should, at minimum, allow for partial functional recoveries for these patients, which could improve their quality of life.
Resumo:
The aim of this study was to assess the toxic effects of zearalenone (ZEA) on the immune function. Ovariectomised rats were treated daily by gavage with 3.0 mg/kg of ZEA for 28 days. Body weight gain, food consumption, haemotological parameters, lymphoid organs, and their cellularities were evaluated. Moreover, acquired immune responses and macrophage activity were also assessed. ZEA promoted reduction in body weight gain, which is not fully explained by diminished food consumption. Despite no effect on haematological parameters, ZEA caused thymic atrophy with histological and thymocyte phenotype changes and decrease in the B cell percentage in the spleen. With respect to acquired and innate immune responses, no statistically significant differences in delayed-type hypersensitivity were noticed; however, in the ZEA-treated rats, antibody production and peroxide release by macrophages were impaired. The observed results could be related to ZEA activity on ERs; thus, ZEA is an immunotoxic compound similar to estrogen and some endocrine disruptors.