3 resultados para Irrigation engineering

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Maize is one of the most important crops in the world. The products generated from this crop are largely used in the starch industry, the animal and human nutrition sector, and biomass energy production and refineries. For these reasons, there is much interest in figuring the potential grain yield of maize genotypes in relation to the environment in which they will be grown, as the productivity directly affects agribusiness or farm profitability. Questions like these can be investigated with ecophysiological crop models, which can be organized according to different philosophies and structures. The main objective of this work is to conceptualize a stochastic model for predicting maize grain yield and productivity under different conditions of water supply while considering the uncertainties of daily climate data. Therefore, one focus is to explain the model construction in detail, and the other is to present some results in light of the philosophy adopted. A deterministic model was built as the basis for the stochastic model. The former performed well in terms of the curve shape of the above-ground dry matter over time as well as the grain yield under full and moderate water deficit conditions. Through the use of a triangular distribution for the harvest index and a bivariate normal distribution of the averaged daily solar radiation and air temperature, the stochastic model satisfactorily simulated grain productivity, i.e., it was found that 10,604 kg ha(-1) is the most likely grain productivity, very similar to the productivity simulated by the deterministic model and for the real conditions based on a field experiment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Subsurface drip irrigation that uses an emitter protection system to avoid its clogging by roots and soil particles may be viable compared to a conventional system. The objective of this work was to evaluate the performance of a system with emitter protection, and to compare the results with a system that uses a conventional emitter for subsurface drip irrigation. In the system with protection an inexpensive materials polyethylene hose, microtube, connector, and a dripper to control the flow rate were used; and, in the conventional system a commercial emitter was used. After 12 months of evaluation, the system with protector showed good performance, with relative average flow rate of 0.97 and 0.98 in pots with and without crop, respectively, showing no clogging problems and lower cost. In conventional system relative flow rate of 0.51 and 0.98 were observed in pots with and without crop, respectively, also clogging degree by roots of 49.22%, and emitters with soil inside was observed. Thus, the use of emitter with protection presented feasibility for subsurface drip irrigation, under conditions used in this research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated the yield, components of production and oil content of two castor bean cultivars through drip irrigation with different water depths. The research was conducted in 2009 in an Oxisol clay in the experimental field in Dourados, Mato Grosso do Sul State. The experimental design was randomized blocks in factorial scheme with five water depths (0, 25, 50, 100 and 150% of evapotranspiration for drip irrigation) in two castor bean cultivars (IAC 2028 and IAC 80) with four replications. The irrigation schedule was predetermined up to two irrigations per week except on rainy days. The increase of irrigation provided significant increase in most components of production and crop yield without changing the oil content of seeds. The application of higher water depth increased yield by 80% in relation to the treatment that received no supplemental irrigation.