10 resultados para International Federation for Heat Treatment

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alicyclobacillus acidoterrestris is a spoilage-causing bacterium in fruit juices. The inactivation of this bacterium by commercial saponin and saponin purified extract from Sapindus saponaria fruits combined with heat-treatment is described. We investigated heat treatment (87, 90, 95, and 99 degrees C) with incubation time ranging from 0 to 50 min, in both concentrated and reconstituted juice. juices were inoculated with 1.0 x 10(4) CFU/mL of A. acidoterrestris spores for the evaluation of the best temperature for inactivation. For the temperatures of 87, 90, and 95 degrees C counts of cell viability decreased rapidly within the first 10 to 20 min of incubation in both concentrated and reconstituted juices; inactivation at 99 degrees C ensued within 1 and 2 min. Combination of commercial saponin (100 mg/L) with a very short incubation time (1 min) at 99 degrees C showed a reduction of 234 log cycle for concentrated juice A. acidoterrestris spores (1.0 x 10(4) CFU/mL) in the first 24 h of incubation after treatments. The most efficient treatment was reached with 300, 400 or 500 mg/L of purified extract of saponins from S. saponaria after 5 days of incubation in concentrated juice, and after 5 days with 300 and 400 mg/L or 72 h with 500 mg/L in reconstituted juice. Commercial saponin and purified extracts from S. saponaria had similar inactivation power on A. acidoterrestris spores, without significant differences (P>0.05). Therefore, purified extract of saponins can be an alternative for the control of A acidoterrestris in fruit juices. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the effect of different heat-treatment strategies for a ceramic primer on the shear bond strength of a 10-methacryloyloxydecyl-dihydrogen-phosphate (MDP)-based resin cement to a yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP) ceramic. Specimens measuring 4.5 x 3.5 x 4.5 mm(3) were produced from Y-TZP presintered cubes and embedded in polymethyl methacrylate (PMMA). Following finishing, the specimens were cleaned using an ultrasound device and distilled water and randomly divided into 10 experimental groups (n=14) according to the heat treatment of the ceramic primer and aging condition. The strategies used for the experimental groups were: GC (control), without primer; G20, primer application at ambient temperature (20 degrees C); G45, primer application + heat treatment at 45 degrees C; G79, primer application + heat treatment at 79 degrees C; and G100, primer application + heat treatment at 100 degrees C. The specimens from the aging groups were submitted to thermal cycling (6000 cycles, 5 degrees C/55 degrees C, 30 seconds per bath) after 24 hours. A cylinder of MDP-based resin cement (2.4 mm in diameter) was constructed on the ceramic surface of the specimens of each experimental group and stored for 24 hours at 37 degrees C. The specimens were submitted to a shear bond strength test (n=14). Thermal gravimetric analysis was performed on the ceramic primer. The data obtained were statistically analyzed by two-way analysis of variance and the Tukey test (alpha=0.05). The experimental group G79 without aging (7.23 +/- 2.87 MPa) presented a significantly higher mean than the other experimental groups without aging (GC: 2.81 +/- 1.5 MPa; G20: 3.38 +/- 2.21 MPa; G100: 3.96 +/- 1.57 MPa), showing no difference from G45 only (G45: 6 +/- 3.63 MPa). All specimens of the aging groups debonded during thermocycling and were considered to present zero bond strength for the statistical analyses. In conclusion, heat treatment of the metal/zirconia primer improved bond strength under the initial condition but did not promote stable bonding under the aging condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal treatment (thermal rectification) is a process in which technological properties of wood are modified using thermal energy, the result of Which is often value-added wood. Thermally treated wood takes on similar color shades to tropical woods and offers considerable resistance to destructive microorganisms and climate action, in addition to having high dimensional stability and low hygroscopicity. Wood samples of Eucalyptus grandis were subjected to various thermal treatments, as performed in presence (140 degrees C; 160 degrees C; 180 degrees C) or in absence of oxygen (160 degrees C; 180 degrees C; 200 degrees C) inside a thermal treatment chamber, and then studied as to their chemical characteristics. Increasing the maximum treatment temperatures led to a reduction in the holocellulose content of samples as a result of the degradation and volatilization of hemicelluloses, also leading to an increase in the relative lignin content. Except for glucose, all monosaccharide levels were found to decrease in samples after the thermal treatment at a maximum temperature of 200 degrees C. The thermal treatment above 160 degrees C led to increased levels of total extractives in the wood samples, probably ascribed to the emergence of low molecular weight substances as a result of thermal degradation. Overall, it was not possible to clearly determine the effect of presence or absence of oxygen in the air during thermal treatment on the chemical characteristics of the relevant wood samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A steady state multi-segmented heat transfer model of the human upper limbs was developed. The main purpose was to evaluate the impact of blood flow through superficial veins and subcutaneous vascular structures in the palm of the hands over the heat transfer between the limbs and the environment. The distinguishing feature of the model is the inclusion of a detailed circulatory network composed of vessels with diameter larger than 1 mm. The model was validated by comparing its results from exposures to a hot, a neutral, and a cold environment to experimental data presented in the literature. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two Zircaloy 4-Ta alloys (14 and 55 wt.% Ta) were produced by arc-melting. The alloys were hot-rolled at 900 degrees C and heat-treated under argon atmosphere for 100 h at 700 degrees C. The alloys were analyzed by scanning electron microscopy and X-ray diffractometry. The microstructure of both rolled and heat-treated alloys is constituted of (beta Zr,Ta)-II Ta-rich precipitates dispersed in a (alpha Zr) matrix. Corrosion tests performed in boiling concentrated H2SO4 solutions showed that the Zircaloy 4-Ta alloys are more corrosion resistant than Zircaloy 4 and that the corrosion resistance increases with increasing Ta content. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents experimental results for flow boiling heat transfer coefficient and critical heat flux (CHF) in small flattened tubes. The tested flattened tubes have the same equivalent internal diameter of 2.2 mm, but different aspect height/width ratios (H/W) of 1/4, 1/2, 2 and 4. The experimental data were compared against results for circular tubes using R134a and R245fa as working fluids at a nominal saturation temperature of 31 degrees C. For mass velocities higher than 200 kg/m(2)s, the flattened and circular tubes presented similar heat transfer coefficients. Such a behavior is related to the fact that stratification effects are negligible under conditions of higher mass velocities. Heat transfer correlations from the literature, usually developed using only circular-channel experimental data, predicted the flattened tube results for mass velocities higher than 200 kg/m(2)s with mean absolute error lower than 20% using the equivalent diameter to account for the geometry effect. Similarly, the critical heat flux results were found to be independent of the tube aspect ratio when the same equivalent length was kept. Equivalent length is a new parameter which takes into account the channel heat transfer area. The CHF correlations for round tubes predicted the flattened tube data relatively well when using the equivalent diameter and length. Furthermore, a new proposed CHF correlation predicted the present flattened tube data with a mean absolute error of 5%. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To evaluate cases of mother-to-child transmission of HIV-1 at multiple sites in Latin America and the Caribbean in terms of missed opportunities for prevention. Methods: Pregnant women infected with HIV-1 were eligible for inclusion if they were enrolled in either the NISDI Perinatal or LILAC protocols by October 20, 2009, and had delivered a live infant with known HIV-1 infection status after March 1, 2006. Results: Of 711 eligible mothers, 10 delivered infants infected with HIV-1. The transmission rate was 1.4% (95% CI, 0.7-2.6). Timing of transmission was in utero or intrapartum (n = 5), intrapartum (n = 2), intrapartum or early postnatal (n = 1), and unknown (n = 2). Possible missed opportunities for prevention included poor control of maternal viral load during pregnancy; late initiation of antiretrovirals during pregnancy; lack of cesarean delivery before labor and before rupture of membranes; late diagnosis of HIV-1 infection; lack of intrapartum antiretrovirals; and incomplete avoidance of breastfeeding. Conclusion: Early knowledge of HIV-1 infection status (ideally before or in early pregnancy) would aid timely initiation of antiretroviral treatment and strategies designed to prevent mother-to-child transmission. Use of antiretrovirals must be appropriately monitored in terms of adherence and drug resistance. If feasible, breastfeeding should be completely avoided. Presented in part at the XIX International AIDS Conference (Washington, DC; July 22-27, 2012); abstract WEPE163. (c) 2012 Published by Elsevier Ireland Ltd. on behalf of International Federation of Gynecology and Obstetrics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal treatment (thermal rectification) is a process in which technological properties of wood are modified using thermal energy, the result of which is often value-added wood. Thermally treated wood takes on similar color shades to tropical woods and offers considerable resistance to destructive microorganisms and climate action, in addition to having high dimensional stability and low hygroscopicity. Wood samples of Eucalyptus grandis were subjected to various thermal treatments, as performed in presence (140ºC; 160ºC; 180ºC) or in absence of oxygen (160ºC; 180ºC; 200ºC) inside a thermal treatment chamber, and then studied as to their chemical characteristics. Increasing the maximum treatment temperatures led to a reduction in the holocellulose content of samples as a result of the degradation and volatilization of hemicelluloses, also leading to an increase in the relative lignin content. Except for glucose, all monosaccharide levels were found to decrease in samples after the thermal treatment at a maximum temperature of 200ºC. The thermal treatment above 160ºC led to increased levels of total extractives in the wood samples, probably ascribed to the emergence of low molecular weight substances as a result of thermal degradation. Overall, it was not possible to clearly determine the effect of presence or absence of oxygen in the air during thermal treatment on the chemical characteristics of the relevant wood samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of cryogenic and stress relief treatments on temper carbide precipitation in the cold work tool steel AISI D2 were studied. For the cryogenic treatment the temperature was −196°C and the holding time was 2, 24 or 30 h. The stress relief heat treatment was carried at 130°C/90 min, when applied. All specimens were compared to a standard thermal cycle. Specimens were studied using metallographic characterisation, X-ray diffraction and thermoelectric power measurements. The metallographic characterisation used SEM (scanning electron microscopy) and SEM-FEG (SEM with field emission gun), besides OM (optical microscopy). No variation in the secondary carbides (micrometre sized) precipitation was found. The temper secondary carbides (nanosized) were found to be more finely dispersed in the matrix of the specimens with cryogenic treatment and without stress relief. The refinement of the temper secondary carbides was attributed to a possible in situ carbide precipitation during tempering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small scale fluid flow systems have been studied for various applications, such as chemical reagent dosages and cooling devices of compact electronic components. This work proposes to present the complete cycle development of an optimized heat sink designed by using Topology Optimization Method (TOM) for best performance, including minimization of pressure drop in fluid flow and maximization of heat dissipation effects, aiming small scale applications. The TOM is applied to a domain, to obtain an optimized channel topology, according to a given multi-objective function that combines pressure drop minimization and heat transfer maximization. Stokes flow hypothesis is adopted. Moreover, both conduction and forced convection effects are included in the steady-state heat transfer model. The topology optimization procedure combines the Finite Element Method (to carry out the physical analysis) with Sequential Linear Programming (as the optimization algorithm). Two-dimensional topology optimization results of channel layouts obtained for a heat sink design are presented as example to illustrate the design methodology. 3D computational simulations and prototype manufacturing have been carried out to validate the proposed design methodology.