2 resultados para Internal friction
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Dynamical Elastic Moduli of the Ti-13Nb-13Zr biomaterial alloy were obtained using the mechanical spectroscopy technique. The sample with heat treatment at 1170K for 30 minutes and water quenched with subsequent aging treatment at 670 K for 3 hours (TNZ + WQ + 670 K/3 h), was characterized through decay of free oscillations of the sample in the flexural vibration mode. The spectra of anelastic relaxation (internal friction and frequency) in the temperature range from 300 K to 625 K not revealed the presence of relaxation process. As shown in the literature, the hcp structure usually does not exhibit any relaxation due to the symmetry of the sites in the crystalline lattice, but if there is some relaxation, this only occurs in special cases such as low concentration of zirconium or saturation of the stoichiometric ratio of oxygen for zirconium. Dynamical elastic modulus obtained for TNZ + WQ + 670 K/3 h alloy was 87 GPa at room temperature, which is higher than the value for Ti-13Nb-13Zr alloy (64 GPa) of the literature. This increment may be related to the change of the proportion of α and β phases. Besides that, the presence of precipitates in the alloy after aging treatment hardens the material and reduces its ductility.
Resumo:
This research addresses the application of friction stir welding (FWS) of titanium alloy Ti–6Al–4V. Friction stir welding is a recent process, developed in the 1990s for aluminum joining; this joining process is being increasingly applied in many industries from basic materials, such as steel alloys, to high performance alloys, such as titanium. It is a process in great development and has its economic advantages when compared to conventional welding. For high performance alloys such as titanium, a major problem to overcome is the construction of tools that can withstand the extreme process environment. In the literature, the possibilities approached are only few tungsten alloys. Early experiments with tools made of cemented carbide (WC) showed optimistic results consistent with the literature. It was initially thought that WC tools may be an option to the FSW process since it is possible to improve the wear resistance of the tool. The metallographic analysis of the welds did not show primary defects of voids (tunneling) or similar internal defects due to processing, only defects related to tool wear which can cause loss of weld quality. The severe tool wear caused loss of surface quality and inclusions of fragments inside the joining, which should be corrected or mitigated by means of coating techniques on tool, or the replacement of cemented carbide with tungsten alloys, as found in the literature.