7 resultados para Interface model

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate the interface dynamics of the two-dimensional stochastic Ising model in an external field under helicoidal boundary conditions. At sufficiently low temperatures and fields, the dynamics of the interface is described by an exactly solvable high-spin asymmetric quantum Hamiltonian that is the infinitesimal generator of the zero range process. Generally, the critical dynamics of the interface fluctuations is in the Kardar-Parisi-Zhang universality class of critical behavior. We remark that a whole family of RSOS interface models similar to the Ising interface model investigated here can be described by exactly solvable restricted high-spin quantum XXZ-type Hamiltonians. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of a thermal buttocks manikin(1) was explored as a tool to standardize the evaluation of seat comfort. Thermal manikin buttocks were developed and calibrated thermally and anatomically to simulate the sensible heat transfer of a seated person and used to evaluate interface pressure distribution. In essence, the pressure maps of manikin buttocks with and without heating were compared to those of a seated person. The results of average pressure demonstrated that the thermal manikins have a better response in interface pressure measurement than manikins without heating.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives. The C-Factor has been used widely to rationalize the changes in shrinkage stress occurring at the tooth/resin-composite interfaces. Experimentally, such stresses have been measured in a uniaxial direction between opposed parallel walls. The situation of adjoining cavity walls has been neglected. The aim was to investigate the hypothesis that: within stylized model rectangular cavities of constant volume and wall thickness, the interfacial shrinkage-stress at the adjoining cavity walls increases steadily as the C-Factor increases. Methods. Eight 3D-FEM restored Class I 'rectangular cavity' models were created by MSC.PATRAN/MSC.Marc, r2-2005 and subjected to 1% of shrinkage, while maintaining constant both the volume (20 mm(3)) and the wall thickness (2 mm), but varying the C-Factor (1.9-13.5). An adhesive contact between the composite and the teeth was incorporated. Polymerization shrinkage was simulated by analogy with thermal contraction. Principal stresses and strains were calculated. Peak values of maximum principal (MP) and maximum shear (MS) stresses from the different walls were displayed graphically as a function of C-Factor. The stress-peak association with C-Factor was evaluated by the Pearson correlation between the stress peak and the C-Factor. Results. The hypothesis was rejected: there was no clear increase of stress-peaks with C-Factor. The stress-peaks particularly expressed as MP and MS varied only slightly with increasing C-Factor. Lower stress-peaks were present at the pulpal floor in comparison to the stress at the axial walls. In general, MP and MS were similar when the axial wall dimensions were similar. The Pearson coefficient only expressed associations for the maximum principal stress at the ZX wall and the Z axis. Significance. Increase of the C-Factor did not lead to increase of the calculated stress-peaks in model rectangular Class I cavity walls. (C) 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chitosans have been widely exploited in biological applications, including drug delivery and tissue engineering, especially owing to their mucoadhesive properties, but the molecular-level mechanisms for the chitosan action are not known in detail. It is believed that chitosan could affect the mucus by interacting with the proteins mucins, in a process mediated by the cell membrane. In this study we used Langmuir monolayers of dimyristoylphosphatidic acid (DMPA) as simplified membrane models to investigate the interplay between the activity of mucins and chitosan. Surface pressure and surface potential measurements were performed with DMPA monolayers onto which chitosan and/or mucin was adsorbed. We found that the expanding effect from mucin was considerably reduced when chitosan was injected after mucin had been adsorbed on the DMPA monolayer. The results were consistent with the formation of complexes between mucin and chitosan, thus highlighting the importance of electrostatic interactions. Furthermore, chitosan could remove mucin that was co-deposited along with DMPA in Langmuir-Blodgett (LB) films, which could be ascribed to molecular-level interactions between chitosan and mucin inferred from the FTIR spectra of the LB films. In conclusion, the results with Langmuir and LB films suggest that electrostatic interactions are crucial for the mucoadhesive mechanism, which is affected by the complexation between chitosan and mucin. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pulchellin is a Ribosome Inactivating Protein containing an A-chain (PAC), whose toxic activity requires crossing the endoplasmic reticulum (ER) membrane. In this paper, we investigate the interaction between recombinant PAC (rPAC) and Langmuir monolayers of dipalmitoyl phosphatidyl glycerol (DPPG), which served as membrane model. Three catalytically active, truncated PACs with increasing deletion of the C-terminal region, possessing 244,239 and 236 residues (rPAC(244), rPAC(239) and rPAC(236)), were studied. rPAC had the strongest interaction with the DPPG monolayer, inducing a large expansion in its surface pressure-area isotherm. The affinity to DPPG decreased with increased deletion of the C-terminal region. When the C-terminal region was deleted completely (rPAC(236)), the interaction was recovered, probably because other hydrophobic regions were exposed to the membrane. Using Polarization Modulated-Infrared Reflection Absorption Spectroscopy (PM-IRRAS) we observed that at a bare air/water interface rPAC comprised mainly alpha-helix structures, the C-terminal region had unordered structures when interacting with DPPG. For rPAC(236) the alpha-helices were preserved even in the presence of DPPG. These results confirm the importance of the C-terminal region for PAC-ER membrane interaction. The partial unfolding only with preserved C-terminal appears a key step for the protein to reach the cytosol and develop its toxic activity. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The repair of large bone defects is a major orthopedic challenge because autologous bone grafts are not available in large amounts and because harvesting is often associated with donor-site morbidity. Considering that bone marrow stromal cells (BMSC) are responsible for the maintenance of bone turnover throughout life, we investigated bone repair at a site of a critically sized segmental defect in sheep tibia treated with BMSCs loaded onto allografts. The defect was created in the mid-portion of the tibial diaphysis of eight adult sheep, and the sheep were treated with ex-vivo expanded autologous BMSCs isolated from marrow aspirates and loaded onto cortical allografts (n = 4). The treated sheep were compared with control sheep that had been treated with cell-free allografts (n = 4) obtained from donors of the same breed as the receptor sheep. Results: The healing response was monitored by radiographs monthly and by computed tomography and histology at six, ten, fourteen, and eighteen weeks after surgery. For the cell-loaded allografts, union was established more rapidly at the interface between the host bone and the allograft, and the healing process was more conspicuous. Remodeling of the allograft was complete at 18 weeks in the cell-treated animals. Histologically, the marrow cavity was reestablished, with intertrabecular spaces being filled with adipose marrow and with evidence of focal hematopoiesis. Conclusions: Allografts cellularized with AOCs (allografts of osteoprogenitor cells) can generate great clinical outcomes to noncellularized allografts to consolidate, reshape, structurally and morphologically reconstruct bone and bone marrow in a relatively short period of time. These features make this strategy very attractive for clinical use in orthopedic bioengineering

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brain fatty acid-binding protein (B-FABP) interacts with biological membranes and delivers polyunsaturated fatty acids (FAs) via a collisional mechanism. The binding of FAs in the protein and the interaction with membranes involve a motif called "portal region", formed by two small α-helices, A1 and A2, connected by a loop. We used a combination of site-directed mutagenesis and electron spin resonance to probe the changes in the protein and in the membrane model induced by their interaction. Spin labeled B-FABP mutants and lipidic spin probes incorporated into a membrane model confirmed that BFABP interacts with micelles through the portal region and led to structural changes in the protein as well in the micelles. These changes were greater in the presence of LPG when compared to the LPC models. ESR spectra of B-FABP labeled mutants showed the presence of two groups of residues that responded to the presence of micelles in opposite ways. In the presence of lysophospholipids, group I of residues, whose side chains point outwards from the contact region between the helices, had their mobility decreased in an environment of lower polarity when compared to the same residues in solution. The second group, composed by residues with side chains situated at the interface between the α-helices, experienced an increase in mobility in the presence of the model membranes. These modifications in the ESR spectra of B-FABP mutants are compatible with a less ordered structure of the portal region inner residues (group II) that is likely to facilitate the delivery of FAs to target membranes. On the other hand, residues in group I and micelle components have their mobilities decreased probably as a result of the formation of a collisional complex. Our results bring new insights for the understanding of the gating and delivery mechanisms of FABPs.