6 resultados para Interaction Order
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The giant extracellular hemoglobin of Glossoscolex paulistus (HbGp) is constituted by approximately 144 subunits containing heme groups with molecular masses in the range of 16-19 kDa forming a monomer (d) and a trimer (abc), and around 36 non-heme structures, named linkers (L). Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF-MS) analysis was performed recently, to obtain directly information on the molecular masses of the different subunits from HbGp in the oxy-form. This technique demonstrated structural similarity between HbGp and the widely studied hemoglobin of Lumbricus terrestris (HbLt). Indeed, two major isoforms (d(1) and d(2)) of identical proportions with masses of 16,355+/-25 and 16,428+/-24 Da, respectively, and two minor isoforms (d(3) and d(4)) with masses around 16.6 kDa were detected for monomer d of HbGp. In the present work, the effects of anionic sodium dodecyl sulfate (SDS) and cationic cethyltrimethyl ammonium chloride (CTAC) on the oligomeric structure of HbGp have been studied by MALDI-TOF-MS in order to evaluate the interaction between ionic surfactants and HbGp. The data obtained with this technique show an effective interaction of cationic surfactant CTAC with the two isoforms of monomer d, d(1) and d(2), both in the whole protein as well as in the pure isolated monomer. The results show that up to 10 molecules of CTAC are bound to each isoform of the monomer. Differently, the mass spectra obtained for SDS-HbGp system showed that the addition of the anionic surfactant SDS does not originate any mass increment of the monomeric subunits, indicating that SDS-HbGp interaction is, probably, significantly less effective as compared to CTAC-HbGp one. The acid pI of the protein around 5.5 is, probably, responsible for this behavior. The results of this work suggest also some interaction of both surfactants with linker chains as well as with trimers, as judged from observed mass increments. Our data are consistent with a recent spectroscopic study showing a strong interaction between CTAC and HbGp at physiological pH [P.S.Santiago, et al, Biochim. Biophys. Acta. 1770 (2007) 506-517.]. (C) 2007 Elsevier B.V. All rights reserved.
Enhancement of Nematic Order and Global Phase Diagram of a Lattice Model for Coupled Nematic Systems
Resumo:
We use an infinite-range Maier-Saupe model, with two sets of local quadrupolar variables and restricted orientations, to investigate the global phase diagram of a coupled system of two nematic subsystems. The free energy and the equations of state are exactly calculated by standard techniques of statistical mechanics. The nematic-isotropic transition temperature of system A increases with both the interaction energy among mesogens of system B, and the two-subsystem coupling J. This enhancement of the nematic phase is manifested in a global phase diagram in terms of the interaction parameters and the temperature T. We make some comments on the connections of these results with experimental findings for a system of diluted ferroelectric nanoparticles embedded in a nematic liquid-crystalline environment.
Resumo:
We discuss two Lagrangian interacting dark energy models in the context of the holographic principle. The potentials of the interacting fields are constructed. The models are compared with CMB distance information, baryonic acoustic oscillations, lookback time and the Constitution supernovae sample. For both models, the results are consistent with a nonvanishing interaction in the dark sector of the Universe and the sign of coupling is consistent with dark energy decaying into dark matter, alleviating the coincidence problem-with more than 3 standard deviations of confidence for one of them. However, this is because the noninteracting holographic dark energy model is a bad fit to the combination of data sets used in this work as compared to the cosmological constant with cold dark matter model, so that one needs to introduce the interaction in order to improve this model.
Resumo:
The affinity of the d-galactose-binding lectin from Artocarpus heterophyllus lectin, known as jacalin, with immonuglobulins (Igs) was determined by biofunctionalization of a piezoelectric transducer. This piezoelectric biofunctionalized transducer was used as a mass-sensitive analytical tool, allowing the real-time binding analysis of jacalin-human immunoglobulin A1 (IgA(1)) and jacalin-bovine IgG(1) interactions from which the apparent affinity constant was calculated. The strategy was centered in immobilizing jacalin on the gold electrode's surface of the piezoelectric crystal resonator using appropriate procedures based on self-assembling of 11-mercaptoundecanoic acid and 2-mercaptoethanol thiol's mixture, a particular immobilization strategy by which it was possible to avoid cross-interaction between the proteins over electrode's surface. The apparent affinity constants obtained between jacalin-human IgA(1) and jacalin-bovine IgG(1) differed by 1 order of magnitude [(8.0 +/- 0.9) x 10(5) vs (8.3 +/- 0.1) x 10(6) L mol(-1)]. On the other hand, the difference found between human IgA(1) and human IgA(2) interaction with jacalin, eight times higher for IgA(1), was attributed to the presence of O-linked glycans in the IgA(1) hinge region, which is absent in IgA(2). Specific interaction of jacalin with O-glycans, proved to be present in the human IgA(1) and hypothetically present in bovine IgG(1) structures, is discussed as responsible for the obtained affinity values.
Resumo:
The viscoelasticity of mammalian lung is determined by the mechanical properties and structural regulation of the airway smooth muscle (ASM). The exposure to polluted air may deteriorate these properties with harmful consequences to individual health. Formaldehyde (FA) is an important indoor pollutant found among volatile organic compounds. This pollutant permeates through the smooth muscle tissue forming covalent bonds between proteins in the extracellular matrix and intracellular protein structure changing mechanical properties of ASM and inducing asthma symptoms, such as airway hyperresponsiveness, even at low concentrations. In the experimental scenario, the mechanical effect of FA is the stiffening of the tissue, but the mechanism behind this effect is not fully understood. Thus, the aim of this study is to reproduce the mechanical behavior of the ASM, such as contraction and stretching, under FA action or not. For this, it was created a two-dimensional viscoelastic network model based on Voronoi tessellation solved using Runge-Kutta method of fourth order. The equilibrium configuration was reached when the forces in different parts of the network were equal. This model simulates the mechanical behavior of ASM through of a network of dashpots and springs. This dashpot-spring mechanical coupling mimics the composition of the actomyosin machinery of ASM through the contraction of springs to a minimum length. We hypothesized that formation of covalent bonds, due to the FA action, can be represented in the model by a simple change in the elastic constant of the springs, while the action of methacholine (MCh) reduce the equilibrium length of the spring. A sigmoid curve of tension as a function of MCh doses was obtained, showing increased tension when the muscle strip was exposed to FA. Our simulations suggest that FA, at a concentration of 0.1 ppm, can affect the elastic properties of the smooth muscle ¯bers by a factor of 120%. We also analyze the dynamic mechanical properties, observing the viscous and elastic behavior of the network. Finally, the proposed model, although simple, incorporates the phenomenology of both MCh and FA and reproduces experimental results observed with in vitro exposure of smooth muscle to FA. Thus, this new mechanical approach incorporates several well know features of the contractile system of the cells in a tissue level model. The model can also be used in different biological scales.
Resumo:
The viscoelasticity of mammalian lung is determined by the mechanical properties and structural regulation of the airway smooth muscle (ASM). The exposure to polluted air may deteriorate these properties with harmful consequences to individual health. Formaldehyde (FA) is an important indoor pollutant found among volatile organic compounds. This pollutant permeates through the smooth muscle tissue forming covalent bonds between proteins in the extracellular matrix and intracellular protein structure changing mechanical properties of ASM and inducing asthma symptoms, such as airway hyperresponsiveness, even at low concentrations. In the experimental scenario, the mechanical effect of FA is the stiffening of the tissue, but the mechanism behind this effect is not fully w1derstood. Thus, the aim of this study is to reproduce the mechanical behavior of the ASM, such as contraction and stretching, under FA action or not. For this, it was created a two-dimensional viscoelastic network model based on Voronoi tessellation solved using Runge-Kutta method of fourth order. The equilibrium configuration was reached when the forces in different parts of the network were equal. This model simulates the mechanical behavior of ASM through of a network of dashpots and springs. This dashpot-spring mechanical coupling mimics the composition of the actomyosin machinery of ASM through the contraction of springs to a minimum length. We hypothesized that formation of covalent bonds, due to the FA action, can be represented in the model by a simple change in the elastic constant of the springs, while the action of methacholinc (MCh) reduce the equilibrium length of the spring. A sigmoid curve of tension as a function of MCh doses was obtained, showing increased tension when the muscle strip was exposed to FA. Our simulations suggest that FA, at a concentration of 0.1 ppm, can affect the elastic properties of the smooth muscle fibers by a factor of 120%. We also analyze the dynamic mechanical properties, observing the viscous and elastic behavior of the network. Finally, the proposed model, although simple, ir1corporates the phenomenology of both MCh and FA and reproduces experirnental results observed with ir1 vitro exposure of smooth muscle to .FA. Thus, this new mechanical approach incorporates several well know features of the contractile system of the cells ir1 a tissue level model. The model can also be used in different biological scales.