19 resultados para Initial data problem
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
In this paper we continue the development of the differential calculus started in Aragona et al. (Monatsh. Math. 144: 13-29, 2005). Guided by the so-called sharp topology and the interpretation of Colombeau generalized functions as point functions on generalized point sets, we introduce the notion of membranes and extend the definition of integrals, given in Aragona et al. (Monatsh. Math. 144: 13-29, 2005), to integrals defined on membranes. We use this to prove a generalized version of the Cauchy formula and to obtain the Goursat Theorem for generalized holomorphic functions. A number of results from classical differential and integral calculus, like the inverse and implicit function theorems and Green's theorem, are transferred to the generalized setting. Further, we indicate that solution formulas for transport and wave equations with generalized initial data can be obtained as well.
Resumo:
Abstract Background A large number of probabilistic models used in sequence analysis assign non-zero probability values to most input sequences. To decide when a given probability is sufficient the most common way is bayesian binary classification, where the probability of the model characterizing the sequence family of interest is compared to that of an alternative probability model. We can use as alternative model a null model. This is the scoring technique used by sequence analysis tools such as HMMER, SAM and INFERNAL. The most prevalent null models are position-independent residue distributions that include: the uniform distribution, genomic distribution, family-specific distribution and the target sequence distribution. This paper presents a study to evaluate the impact of the choice of a null model in the final result of classifications. In particular, we are interested in minimizing the number of false predictions in a classification. This is a crucial issue to reduce costs of biological validation. Results For all the tests, the target null model presented the lowest number of false positives, when using random sequences as a test. The study was performed in DNA sequences using GC content as the measure of content bias, but the results should be valid also for protein sequences. To broaden the application of the results, the study was performed using randomly generated sequences. Previous studies were performed on aminoacid sequences, using only one probabilistic model (HMM) and on a specific benchmark, and lack more general conclusions about the performance of null models. Finally, a benchmark test with P. falciparum confirmed these results. Conclusions Of the evaluated models the best suited for classification are the uniform model and the target model. However, the use of the uniform model presents a GC bias that can cause more false positives for candidate sequences with extreme compositional bias, a characteristic not described in previous studies. In these cases the target model is more dependable for biological validation due to its higher specificity.
Resumo:
Background: A current challenge in gene annotation is to define the gene function in the context of the network of relationships instead of using single genes. The inference of gene networks (GNs) has emerged as an approach to better understand the biology of the system and to study how several components of this network interact with each other and keep their functions stable. However, in general there is no sufficient data to accurately recover the GNs from their expression levels leading to the curse of dimensionality, in which the number of variables is higher than samples. One way to mitigate this problem is to integrate biological data instead of using only the expression profiles in the inference process. Nowadays, the use of several biological information in inference methods had a significant increase in order to better recover the connections between genes and reduce the false positives. What makes this strategy so interesting is the possibility of confirming the known connections through the included biological data, and the possibility of discovering new relationships between genes when observed the expression data. Although several works in data integration have increased the performance of the network inference methods, the real contribution of adding each type of biological information in the obtained improvement is not clear. Methods: We propose a methodology to include biological information into an inference algorithm in order to assess its prediction gain by using biological information and expression profile together. We also evaluated and compared the gain of adding four types of biological information: (a) protein-protein interaction, (b) Rosetta stone fusion proteins, (c) KEGG and (d) KEGG+GO. Results and conclusions: This work presents a first comparison of the gain in the use of prior biological information in the inference of GNs by considering the eukaryote (P. falciparum) organism. Our results indicates that information based on direct interaction can produce a higher improvement in the gain than data about a less specific relationship as GO or KEGG. Also, as expected, the results show that the use of biological information is a very important approach for the improvement of the inference. We also compared the gain in the inference of the global network and only the hubs. The results indicates that the use of biological information can improve the identification of the most connected proteins.
Resumo:
The design of a network is a solution to several engineering and science problems. Several network design problems are known to be NP-hard, and population-based metaheuristics like evolutionary algorithms (EAs) have been largely investigated for such problems. Such optimization methods simultaneously generate a large number of potential solutions to investigate the search space in breadth and, consequently, to avoid local optima. Obtaining a potential solution usually involves the construction and maintenance of several spanning trees, or more generally, spanning forests. To efficiently explore the search space, special data structures have been developed to provide operations that manipulate a set of spanning trees (population). For a tree with n nodes, the most efficient data structures available in the literature require time O(n) to generate a new spanning tree that modifies an existing one and to store the new solution. We propose a new data structure, called node-depth-degree representation (NDDR), and we demonstrate that using this encoding, generating a new spanning forest requires average time O(root n). Experiments with an EA based on NDDR applied to large-scale instances of the degree-constrained minimum spanning tree problem have shown that the implementation adds small constants and lower order terms to the theoretical bound.
Resumo:
Background: This paper addresses the prediction of the free energy of binding of a drug candidate with enzyme InhA associated with Mycobacterium tuberculosis. This problem is found within rational drug design, where interactions between drug candidates and target proteins are verified through molecular docking simulations. In this application, it is important not only to correctly predict the free energy of binding, but also to provide a comprehensible model that could be validated by a domain specialist. Decision-tree induction algorithms have been successfully used in drug-design related applications, specially considering that decision trees are simple to understand, interpret, and validate. There are several decision-tree induction algorithms available for general-use, but each one has a bias that makes it more suitable for a particular data distribution. In this article, we propose and investigate the automatic design of decision-tree induction algorithms tailored to particular drug-enzyme binding data sets. We investigate the performance of our new method for evaluating binding conformations of different drug candidates to InhA, and we analyze our findings with respect to decision tree accuracy, comprehensibility, and biological relevance. Results: The empirical analysis indicates that our method is capable of automatically generating decision-tree induction algorithms that significantly outperform the traditional C4.5 algorithm with respect to both accuracy and comprehensibility. In addition, we provide the biological interpretation of the rules generated by our approach, reinforcing the importance of comprehensible predictive models in this particular bioinformatics application. Conclusions: We conclude that automatically designing a decision-tree algorithm tailored to molecular docking data is a promising alternative for the prediction of the free energy from the binding of a drug candidate with a flexible-receptor.
Resumo:
The attributes describing a data set may often be arranged in meaningful subsets, each of which corresponds to a different aspect of the data. An unsupervised algorithm (SCAD) that simultaneously performs fuzzy clustering and aspects weighting was proposed in the literature. However, SCAD may fail and halt given certain conditions. To fix this problem, its steps are modified and then reordered to reduce the number of parameters required to be set by the user. In this paper we prove that each step of the resulting algorithm, named ASCAD, globally minimizes its cost-function with respect to the argument being optimized. The asymptotic analysis of ASCAD leads to a time complexity which is the same as that of fuzzy c-means. A hard version of the algorithm and a novel validity criterion that considers aspect weights in order to estimate the number of clusters are also described. The proposed method is assessed over several artificial and real data sets.
Resumo:
Objectives: The Brazilian public health system does not provide electroconvulsive therapy (ECT), which is limited to a few academic services. National mental health policies are against ECT. Our objectives were to analyze critically the public policies toward ECT and present the current situation using statistics from the Institute of Psychiatry of the University of Sao Paulo (IPq-HCFMUSP) and summary data from the other 13 ECT services identified in the country. Methods: Data regarding ECT treatment at the IPq-HCFMUSP were collected from January 2009 to June 2010 (demographical, number of sessions, and diagnoses). All the data were analyzed using SPSS 19, Epic Info 2000, and Excel. Results: During this period, 331 patients were treated at IPq-HCFMUSP: 221 (67%) were from Sao Paulo city, 50 (15.2%) from Sao Paulo's metropolitan area, 39 (11.8%) from Sao Paulo's countryside, and 20 (6.1%) from other states; 7352 ECT treatments were delivered-63.0% (4629) devoted entirely via the public health system (although not funded by the federal government); the main diagnoses were a mood disorder in 86.4% and schizophrenia in 7.3% of the cases. Conclusions: There is an important lack of public assistance for ECT, affecting mainly the poor and severely ill patients. The university services are overcrowded and cannot handle all the referrals. The authors press for changes in the mental health policies.
Resumo:
Introduction: This research project examined influence of the doctors' speciality on primary health care (PHC) problem solving in Belo Horizonte (BH) Brazil, comparing homeopathic with family health doctors (FH), from the management's and the patients' viewpoint. In BH, both FH and homeopathic doctors work in PHC. The index of resolvability (IR) is used to compare resolution of problems by doctors. Methods: The present research compared IR, using official data from the Secretariat of Health and test requests made by the doctors and 482 structured interviews with patients. A total of 217,963 consultations by 14 homeopaths and 67 FH doctors between 1 July 2006 and 30 June 2007 were analysed. Results: The results show significant differences greater problem resolution by homeopaths compared to FH doctors. Conclusion: In BH, the medical speciality, homeopathy or FH, has an impact on problem solving, both from the managers' and the patients' point of view. Homeopaths request fewer tests and have better IR compared with FH doctors. Specialisation in homeopathy is an independent positive factor in problem solving at PHC level in BH, Brazil. Homeopathy (2012) 101, 44-50.
Resumo:
We propose simple heuristics for the assembly line worker assignment and balancing problem. This problem typically occurs in assembly lines in sheltered work centers for the disabled. Different from the well-known simple assembly line balancing problem, the task execution times vary according to the assigned worker. We develop a constructive heuristic framework based on task and worker priority rules defining the order in which the tasks and workers should be assigned to the workstations. We present a number of such rules and compare their performance across three possible uses: as a stand-alone method, as an initial solution generator for meta-heuristics, and as a decoder for a hybrid genetic algorithm. Our results show that the heuristics are fast, they obtain good results as a stand-alone method and are efficient when used as a initial solution generator or as a solution decoder within more elaborate approaches.
Resumo:
Introduction: Video-assisted thoracic sympathectomy provides excellent resolution of palmar and axillary hyperhidrosis but is associated with compensatory hyperhidrosis. Low doses of oxybutynin, an anticholinergic medication that competitively antagonizes the muscarinic acetylcholine receptor, can be used to treat palmar hyperhidrosis with fewer side effects. Objective: This study evaluated the effectiveness and patient satisfaction of oral oxybutynin at low doses (5 mg twice daily) compared with placebo for treating palmar hyperhidrosis. Methods: This was prospective, randomized, and controlled study. From December 2010 to February 2011, 50 consecutive patients with palmar hyperhidrosis were treated with oxybutynin or placebo. Data were collected from 50 patients, but 5 (10.0%) were lost to follow-up. During the first week, patients received 2.5 mg of oxybutynin once daily in the evening. From days 8 to 21, they received 2.5 mg twice daily, and from day 22 to the end of week 6, they received 5 mg twice daily. All patients underwent two evaluations, before and after (6 weeks) the oxybutynin treatment, using a clinical questionnaire and a clinical protocol for quality of life. Results: Palmar and axillary hyperhidrosis improved in >70% of the patients, and 47.8% of those presented great improvement. Plantar hyperhidrosis improved in >90% of the patients. Most patients (65.2%) showed improvements in their quality of life. The side effects were minor, with dry mouth being the most frequent (47.8%). Conclusions: Treatment of palmar and axillary hyperhidrosis with oxybutynin is a good initial alternative for treatment given that it presents good results and improves quality of life. (J Vasc Surg 2012;55:1696-700.)
Resumo:
A computational pipeline combining texture analysis and pattern classification algorithms was developed for investigating associations between high-resolution MRI features and histological data. This methodology was tested in the study of dentate gyrus images of sclerotic hippocampi resected from refractory epilepsy patients. Images were acquired using a simple surface coil in a 3.0T MRI scanner. All specimens were subsequently submitted to histological semiquantitative evaluation. The computational pipeline was applied for classifying pixels according to: a) dentate gyrus histological parameters and b) patients' febrile or afebrile initial precipitating insult history. The pipeline results for febrile and afebrile patients achieved 70% classification accuracy, with 78% sensitivity and 80% specificity [area under the reader observer characteristics (ROC) curve: 0.89]. The analysis of the histological data alone was not sufficient to achieve significant power to separate febrile and afebrile groups. Interesting enough, the results from our approach did not show significant correlation with histological parameters (which per se were not enough to classify patient groups). These results showed the potential of adding computational texture analysis together with classification methods for detecting subtle MRI signal differences, a method sufficient to provide good clinical classification. A wide range of applications of this pipeline can also be used in other areas of medical imaging. Magn Reson Med, 2012. (c) 2012 Wiley Periodicals, Inc.
Resumo:
Determination of the utility harmonic impedance based on measurements is a significant task for utility power-quality improvement and management. Compared to those well-established, accurate invasive methods, the noninvasive methods are more desirable since they work with natural variations of the loads connected to the point of common coupling (PCC), so that no intentional disturbance is needed. However, the accuracy of these methods has to be improved. In this context, this paper first points out that the critical problem of the noninvasive methods is how to select the measurements that can be used with confidence for utility harmonic impedance calculation. Then, this paper presents a new measurement technique which is based on the complex data-based least-square regression, combined with two techniques of data selection. Simulation and field test results show that the proposed noninvasive method is practical and robust so that it can be used with confidence to determine the utility harmonic impedances.
Resumo:
Relativistic nuclear collisions data on two-particle correlations exhibit structures as function of relative azimuthal angle and rapidity. A unified description of these near-side and away-side structures is proposed for low to moderate transverse momentum. It is based on the combined effect of tubular initial conditions and hydrodynamical expansion. Contrary to expectations, the hydrodynamics solution shows that the high-energy density tubes (leftover from the initial particle interactions) give rise to particle emission in two directions and this is what leads to the various structures. This description is sensitive to some of the initial tube parameters and may provide a probe of the strong interaction. This explanation is compared with an alternative one where some triangularity in the initial conditions is assumed. A possible experimental test is suggested. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In this article, we propose a new Bayesian flexible cure rate survival model, which generalises the stochastic model of Klebanov et al. [Klebanov LB, Rachev ST and Yakovlev AY. A stochastic-model of radiation carcinogenesis - latent time distributions and their properties. Math Biosci 1993; 113: 51-75], and has much in common with the destructive model formulated by Rodrigues et al. [Rodrigues J, de Castro M, Balakrishnan N and Cancho VG. Destructive weighted Poisson cure rate models. Technical Report, Universidade Federal de Sao Carlos, Sao Carlos-SP. Brazil, 2009 (accepted in Lifetime Data Analysis)]. In our approach, the accumulated number of lesions or altered cells follows a compound weighted Poisson distribution. This model is more flexible than the promotion time cure model in terms of dispersion. Moreover, it possesses an interesting and realistic interpretation of the biological mechanism of the occurrence of the event of interest as it includes a destructive process of tumour cells after an initial treatment or the capacity of an individual exposed to irradiation to repair altered cells that results in cancer induction. In other words, what is recorded is only the damaged portion of the original number of altered cells not eliminated by the treatment or repaired by the repair system of an individual. Markov Chain Monte Carlo (MCMC) methods are then used to develop Bayesian inference for the proposed model. Also, some discussions on the model selection and an illustration with a cutaneous melanoma data set analysed by Rodrigues et al. [Rodrigues J, de Castro M, Balakrishnan N and Cancho VG. Destructive weighted Poisson cure rate models. Technical Report, Universidade Federal de Sao Carlos, Sao Carlos-SP. Brazil, 2009 (accepted in Lifetime Data Analysis)] are presented.
Resumo:
Abstract Background The search for enriched (aka over-represented or enhanced) ontology terms in a list of genes obtained from microarray experiments is becoming a standard procedure for a system-level analysis. This procedure tries to summarize the information focussing on classification designs such as Gene Ontology, KEGG pathways, and so on, instead of focussing on individual genes. Although it is well known in statistics that association and significance are distinct concepts, only the former approach has been used to deal with the ontology term enrichment problem. Results BayGO implements a Bayesian approach to search for enriched terms from microarray data. The R source-code is freely available at http://blasto.iq.usp.br/~tkoide/BayGO in three versions: Linux, which can be easily incorporated into pre-existent pipelines; Windows, to be controlled interactively; and as a web-tool. The software was validated using a bacterial heat shock response dataset, since this stress triggers known system-level responses. Conclusion The Bayesian model accounts for the fact that, eventually, not all the genes from a given category are observable in microarray data due to low intensity signal, quality filters, genes that were not spotted and so on. Moreover, BayGO allows one to measure the statistical association between generic ontology terms and differential expression, instead of working only with the common significance analysis.