2 resultados para Inga vera
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
First observation of alternative food usage (extrafloral nectar) by the assassin bug Atopozelus opsimus (Hemiptera, Reduviidae). Assassin bugs (Reduviidae) are voracious insects that prey on other arthropods. Recent evidences have pointed out that these predators also feed on plant derived substances in rare opportunities. The present study describes the feeding behavior of the reduviid Atopozelus opsimus on extrafloral nectaries of Inga vera (Fabaceae) in a Neotropical savanna area. It was investigated if the insects feed more frequently of extrafloral nectar or prey, and if individuals of different stages of development vary according to feeding behavior. Notably, the results suggest that the diet of all instars and adults consist mainly of extrafloral nectar (N = 1013), in detriment of captured prey ingestion (N = 18). Also, there was no variation on feeding behavior and life stage.
Resumo:
Native Inga laurina (Fabaceae) trypsin inhibitor (ILTI) was tested for anti-insect activity against Diatraea saccharalis and Heliothis virescens larvae. The addition of 0.1% ILTI to the diet of D. saccharalis did not alter larval survival but decreased larval weight by 51%. The H. virescens larvae that were fed a diet containing 0.5% ILTI showed an 84% decrease in weight. ILTI was not digested by the midgut proteinases of either species of larvae. The trypsin levels were reduced by 55.3% in the feces of D. saccharalis and increased by 24.1% in the feces of H. virescens. The trypsin activity in both species fed with ILTI was sensitive to the inhibitor, suggesting that no novel proteinase resistant to ILTI was induced. Additionally, ILTI exhibited inhibitory activity against the proteinases present in the larval midgut of different species of Lepidoptera. The organization of the ilti gene was elucidated by analyzing its corresponding genomic sequence. The recombinant ILTI protein (reILTI) was expressed and purified, and its efficacy was evaluated. Both native ILTI and reILTI exhibited a similar strong inhibitory effect on bovine trypsin activity. These results suggest that ILTI presents insecticidal properties against both insects and may thus be a useful tool in the genetic engineering of plants. (c) 2012 Elsevier Inc. All rights reserved.