3 resultados para Information sources

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Productive and reproductive traits of beehives are influenced by climate and food availability in the region where the bees are reared or maintained, thus honey and pollen storage, egg-laying conditions of the queen as well as comb occupation are subject to seasonal variations. The present study was conducted in the apiary of the Department of Entomology and Acarology, College of Agriculture Luiz de Queiroz, ESALQ/USP, in the municipality of Piracicaba, in an area containing fruit trees, ornamental plants and a fragment of a native forest. The objective was to identify protein sources used by honeybees (Apis mellifera) over a whole year (2010-2011) in remnants of the Atlantic forest, information that can be used in the conservation and restoration of degraded areas. For sample preparation, the acetolysis method was adopted (Eredtman 1952) and the quantitative analysis was performed by counting successive samples of 900 grains per sample which were grouped by botanical species and/or pollen types. The results show that the bees used various plant types in the area, including ruderal species, to maintain their colonies. Apis mellifera seeks food sources in all plants in the surroundings of the apiary, including herbaceous, shrubs, trees, native or introduced. Eucalyptus sp. played an important role as a food source in all seasons due to its wide availability around the apiary and its high flower production. The most frequent pollen types (greater than 10% of the sample) were Anadenanthera sp., Acacia sp, Miconia sp. and Eucalyptus sp. in winter; Philodendron sp., Mikania cordifolia, Parthenium and Eucalyptus sp. in spring; Alternanthera ficoidea, Chamissoa altissima and Eucalyptus sp. in summer; Philodendron sp., Raphanus sp. and Eucalyptus sp. in autumn.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We measured polycyclic aromatic hydrocarbons (PAHs) in bulk precipitation in the Fortaleza metropolitan area, Ceara, Brazil, for the first time. Because little information is available concerning PAHs in tropical climatic regions, we assessed their spatial distribution and possible sources and the influence of urban activities on the depositional fluxes of PAHs in bulk precipitation. The concentrations of individual and total PAHs (Sigma(PAHs)) in bulk precipitation ranged from undetectable to 133.9 ng.L-1 and from 202.6 to 674.8 ng.L-1, respectively. The plume of highest concentrations was most intense in a zone with heavy automobile traffic and favorable topography for the concentration of emitted pollutants. The depositional fluxes of PAHs in bulk precipitation calculated in this study (undetectable to 0.87 mu g.m(-2).month(-1)) are 4 to 27 times smaller than those reported from tourist sites and industrial and urban areas in the Northern Hemisphere. Diagnostic ratio analyses of PAH samples showed that the major source of emissions is gasoline exhaust, with a small percentage originating from diesel fuel. Contributions from coal and wood combustion were also found. Major economic activities appear to contribute to pollutant emissions. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background The study and analysis of gene expression measurements is the primary focus of functional genomics. Once expression data is available, biologists are faced with the task of extracting (new) knowledge associated to the underlying biological phenomenon. Most often, in order to perform this task, biologists execute a number of analysis activities on the available gene expression dataset rather than a single analysis activity. The integration of heteregeneous tools and data sources to create an integrated analysis environment represents a challenging and error-prone task. Semantic integration enables the assignment of unambiguous meanings to data shared among different applications in an integrated environment, allowing the exchange of data in a semantically consistent and meaningful way. This work aims at developing an ontology-based methodology for the semantic integration of gene expression analysis tools and data sources. The proposed methodology relies on software connectors to support not only the access to heterogeneous data sources but also the definition of transformation rules on exchanged data. Results We have studied the different challenges involved in the integration of computer systems and the role software connectors play in this task. We have also studied a number of gene expression technologies, analysis tools and related ontologies in order to devise basic integration scenarios and propose a reference ontology for the gene expression domain. Then, we have defined a number of activities and associated guidelines to prescribe how the development of connectors should be carried out. Finally, we have applied the proposed methodology in the construction of three different integration scenarios involving the use of different tools for the analysis of different types of gene expression data. Conclusions The proposed methodology facilitates the development of connectors capable of semantically integrating different gene expression analysis tools and data sources. The methodology can be used in the development of connectors supporting both simple and nontrivial processing requirements, thus assuring accurate data exchange and information interpretation from exchanged data.