6 resultados para Indirect orientation of images
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Nanoplasmonics and metamaterials sciences are rapidly growing due to their contributions to photonic devices fabrication with applications ranging from biomedicine to photovoltaic cells. Noble metal nanoparticles incorporated into polymer matrix have great potential for such applications due to their distinctive optical properties. However, methods to indirectly incorporate metal nanoparticles into polymeric microstructures are still on demand. Here we report on the fabrication of two-photon polymerized microstructures doped with gold nanoparticles through an indirect doping process, so they do not interfere in the two-photon polymerization (2PP) process. Such microstructures present a strong emission, arising from gold nanoparticles fluorescence. The microstructures produced are potential candidates for nanoplasmonics and metamaterials devices applications and the nanoparticles production method can be applied in many samples, heated simultaneously, opening the possibility for large scale processes. (C) 2012 Optical Society of America
Resumo:
The aim of this study is to develop a new enzymeless electroanalytical method for the indirect quantification of creatinine from urine sample. This method is based on the electrochemical monitoring of picrate anion reduction at a glassy carbon electrode in an alkaline medium before and after it has reacted with creatinine (Jaffe's reaction). By using the differential pulse voltammetry technique under the optimum experimental conditions (step potential, amplitude potential, reaction time, and temperature), a linear analytical curve was obtained for concentrations of creatinine ranging from 1 to 80 mu mol L-1, with a detection limit of 380 nmol L-1. This proposed method was used to measure creatinine in human urine without the interference of most common organic species normally present in biological fluids (e.g., uric acid, ascorbic acid, glucose, and phosphocreatinine). The results obtained using urine samples were highly similar to the results obtained using the reference spectrophotometric method (at a 95% confidence level). (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Reactivity and titers of autoantibodies vary during the course of autoimmune hepatitis (AIH), and some autoantibodies have been associated with disease activity and adverse outcomes after treatment. The aim of this study was to assess the autoantibody behavior in AIH and its significance as predictors of biochemical and histological remission. A total of 117 patients with AIH (mean age 18.6 [4-69] years) were evaluated and tested for auto- antibodies at disease onset and successively (mean 3.2 [2-6] times) after a mean follow-up evaluation of 70 [20-185] months. Antismooth muscle (ASMA), antiliver kidney micro- some type 1 (anti-LKM1), antiliver cytosol type 1 (anti-LC1), antimitochondrial, antinu- clear (ANA), and antiactin antibodies (AAA) were determined at disease onset and 379 other times during the follow-up evaluation through indirect immunofluorescence in rodent tissues, HEp-2 cells, and human fibroblasts. Anti-SLA/LP were assessed 45 times in the follow-up evaluation of 19 patients using enzyme-linked immunosorbent assay (ELISA). Upon admission, AIH types 1 and 2 were observed in 95 and 17 patients, respectively. Five subjects had AIH with anti-SLA/LP as the sole markers. Patients initially negative for AAA did not develop these antibodies thereafter. ANA were detected de novo in six and three subjects with AIH types 1 and 2, respectively. After treatment, only ASMA ( > 1:80) and AAA ( > 1:40) were significantly associated with biochemical (76.9% and 79.8%) and histological features (100% and 100%) of disease activity ( P < 0.001). Conclusion: With the exception of ANA, the autoantibody profile does not markedly vary in the course of AIH. The persistence of high titers of ASMA and/or AAA in patients with AIH is associated with disease activity.
Resumo:
The cellular rheology has recently undergone a rapid development with particular attention to the cytoskeleton mechanical properties and its main components - actin filaments, intermediate filaments, microtubules and crosslinked proteins. However it is not clear what are the cellular structural changes that directly affect the cell mechanical properties. Thus, in this work, we aimed to quantify the structural rearrangement of these fibers that may emerge in changes in the cell mechanics. We created an image analysis platform to study smooth muscle cells from different arteries: aorta, mammary, renal, carotid and coronary and processed respectively 31, 29, 31, 30 and 35 cell image obtained by confocal microscopy. The platform was developed in Matlab (MathWorks) and it uses the Sobel operator to determine the actin fiber image orientation of the cell, labeled with phalloidin. The Sobel operator is used as a filter capable of calculating the pixel brightness gradient, point to point, in the image. The operator uses vertical and horizontal convolution kernels to calculate the magnitude and the angle of the pixel intensity gradient. The image analysis followed the sequence: (1) opens a given cells image set to be processed; (2) sets a fix threshold to eliminate noise, based on Otsu's method; (3) detect the fiber edges in the image using the Sobel operator; and (4) quantify the actin fiber orientation. Our first result is the probability distribution II(Δθ) to find a given fiber angle deviation (Δθ) from the main cell fiber orientation θ0. The II(Δθ) follows an exponential decay II(Δθ) = Aexp(-αΔθ) regarding to its θ0. We defined and determined a misalignment index α of the fibers of each artery kind: coronary αCo = (1.72 ‘+ or =’ 0.36)rad POT -1; renal αRe = (1.43 + or - 0.64)rad POT -1; aorta αAo = (1.42 + or - 0.43)rad POT -1; mammary αMa = (1.12 + or - 0.50)rad POT -1; and carotid αCa = (1.01 + or - 0.39)rad POT -1. The α of coronary and carotid are statistically different (p < 0.05) among all analyzed cells. We discussed our results correlating the misalignment index data with the experimental cell mechanical properties obtained by using Optical Magnetic Twisting Cytometry with the same group of cells.
Resumo:
We evaluated the diagnostic quality of first-trimester ultrasound images transmitted in realtime using low-cost telecommunications. A prospective sample of fetal ultrasound images from 11 weeks to 13 weeks and six days of pregnancy was obtained from pregnant women over 18 years old. The examinations were transmitted in realtime to three independent examiners who carried out a qualitative assessment based on parameters established by the Fetal Medicine Foundation. All fetal structures could be viewed and the quality of images received by the examiners was considered normal. There were significant differences for crown-rump length and nuchal translucency in the transmitted images but the loss in definition was acceptable. Thus the quality of images transmitted via the Internet through the use of low-cost software appeared suitable for screening for chromosomal abnormalities in the first trimester of pregnancy.
Resumo:
Studies of subjective time have adopted different methods to understand different processes of time perception. Four sculptures, with implied movement ranked as 1.5-, 3.0-, 4.5-, and 6.0-point stimuli on the Body Movement Ranking Scale, were randomly presented to 42 university students untrained in visual arts and ballet. Participants were allowed to observe the images for any length of time (exploration time) and, immediately after each image was observed, recorded the duration as they perceived it. The results of temporal ratio (exploration time/time estimation) showed that exploration time of images also affected perception of time, i.e., the subjective time for sculptures representing implied movement were overestimated.\