4 resultados para Index medicus (National Library of Medicine (U.S.))
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Background: Proteinaceous toxins are observed across all levels of inter-organismal and intra-genomic conflicts. These include recently discovered prokaryotic polymorphic toxin systems implicated in intra-specific conflicts. They are characterized by a remarkable diversity of C-terminal toxin domains generated by recombination with standalone toxin-coding cassettes. Prior analysis revealed a striking diversity of nuclease and deaminase domains among the toxin modules. We systematically investigated polymorphic toxin systems using comparative genomics, sequence and structure analysis. Results: Polymorphic toxin systems are distributed across all major bacterial lineages and are delivered by at least eight distinct secretory systems. In addition to type-II, these include type-V, VI, VII (ESX), and the poorly characterized "Photorhabdus virulence cassettes (PVC)", PrsW-dependent and MuF phage-capsid-like systems. We present evidence that trafficking of these toxins is often accompanied by autoproteolytic processing catalyzed by HINT, ZU5, PrsW, caspase-like, papain-like, and a novel metallopeptidase associated with the PVC system. We identified over 150 distinct toxin domains in these systems. These span an extraordinary catalytic spectrum to include 23 distinct clades of peptidases, numerous previously unrecognized versions of nucleases and deaminases, ADP-ribosyltransferases, ADP ribosyl cyclases, RelA/SpoT-like nucleotidyltransferases, glycosyltranferases and other enzymes predicted to modify lipids and carbohydrates, and a pore-forming toxin domain. Several of these toxin domains are shared with host-directed effectors of pathogenic bacteria. Over 90 families of immunity proteins might neutralize anywhere between a single to at least 27 distinct types of toxin domains. In some organisms multiple tandem immunity genes or immunity protein domains are organized into polyimmunity loci or polyimmunity proteins. Gene-neighborhood-analysis of polymorphic toxin systems predicts the presence of novel trafficking-related components, and also the organizational logic that allows toxin diversification through recombination. Domain architecture and protein-length analysis revealed that these toxins might be deployed as secreted factors, through directed injection, or via inter-cellular contact facilitated by filamentous structures formed by RHS/YD, filamentous hemagglutinin and other repeats. Phyletic pattern and life-style analysis indicate that polymorphic toxins and polyimmunity loci participate in cooperative behavior and facultative 'cheating' in several ecosystems such as the human oral cavity and soil. Multiple domains from these systems have also been repeatedly transferred to eukaryotes and their viruses, such as the nucleo-cytoplasmic large DNA viruses. Conclusions: Along with a comprehensive inventory of toxins and immunity proteins, we present several testable predictions regarding active sites and catalytic mechanisms of toxins, their processing and trafficking and their role in intra-specific and inter-specific interactions between bacteria. These systems provide insights regarding the emergence of key systems at different points in eukaryotic evolution, such as ADP ribosylation, interaction of myosin VI with cargo proteins, mediation of apoptosis, hyphal heteroincompatibility, hedgehog signaling, arthropod toxins, cell-cell interaction molecules like teneurins and different signaling messengers.
Resumo:
Nicotinamide adenine dinucleotide (NAD) is a ubiquitous cofactor participating in numerous redox reactions. It is also a substrate for regulatory modifications of proteins and nucleic acids via the addition of ADP-ribose moieties or removal of acyl groups by transfer to ADP-ribose. In this study, we use in-depth sequence, structure and genomic context analysis to uncover new enzymes and substrate-binding proteins in NAD-utilizing metabolic and macromolecular modification systems. We predict that Escherichia coli YbiA and related families of domains from diverse bacteria, eukaryotes, large DNA viruses and single strand RNA viruses are previously unrecognized components of NAD-utilizing pathways that probably operate on ADP-ribose derivatives. Using contextual analysis we show that some of these proteins potentially act in RNA repair, where NAD is used to remove 2'-3' cyclic phosphodiester linkages. Likewise, we predict that another family of YbiA-related enzymes is likely to comprise a novel NAD-dependent ADP-ribosylation system for proteins, in conjunction with a previously unrecognized ADP-ribosyltransferase. A similar ADP-ribosyltransferase is also coupled with MACRO or ADP-ribosylglycohydrolase domain proteins in other related systems, suggesting that all these novel systems are likely to comprise pairs of ADP-ribosylation and ribosylglycohydrolase enzymes analogous to the DraG-DraT system, and a novel group of bacterial polymorphic toxins. We present evidence that some of these coupled ADP-ribosyltransferases/ribosylglycohydrolases are likely to regulate certain restriction modification enzymes in bacteria. The ADP-ribosyltransferases found in these, the bacterial polymorphic toxin and host-directed toxin systems of bacteria such as Waddlia also throw light on the evolution of this fold and the origin of eukaryotic polyADP-ribosyltransferases and NEURL4-like ARTs, which might be involved in centrosomal assembly. We also infer a novel biosynthetic pathway that might be involved in the synthesis of a nicotinate-derived compound in conjunction with an asparagine synthetase and AMPylating peptide ligase. We use the data derived from this analysis to understand the origin and early evolutionary trajectories of key NAD-utilizing enzymes and present targets for future biochemical investigations.
Resumo:
OBJETIVO: Avaliar as evidências disponíveis na literatura sobre o processo de revisão por pares de artigos científicos na área da saúde. MÉTODOS: Revisão integrativa de literatura, na qual foram realizadas buscas nas bases de dados da Literatura Latino-Americana e do Caribe em Ciências da Saúde, National Library of Medicine, Medical Literature Analysis and Retrieval System Online e Cumulative Index to Nursing and Allied Health Literature. Um total de 12 estudos foi analisado. RESULTADOS: Foi demonstrado que existem muitas críticas ao processo em razão de sua subjetividade, porém acredita-se na necessidade dos mesmos. CONCLUSÃO: Este processo é imprescindível para a difusão do conhecimento, sendo uma etapa essencial no julgamento de manuscritos científicos, no entanto, considera-se importante que se façam mudanças no sentido de reduzir a subjetividade para garantir credibilidade ao processo.
Resumo:
Background and Purpose: Oropharyngeal dysphagia is a common manifestation in acute stroke. Aspiration resulting from difficulties in swallowing is a symptom that should be considered due to the frequent occurrence of aspiration pneumonia that could influence the patient's recovery as it causes clinical complications and could even lead to the patient's death. The early clinical evaluation of swallowing disorders can help define approaches and avoid oral feeding, which may be detrimental to the patient. This study aimed to create an algorithm to identify patients at risk of developing dysphagia following acute ischemic stroke in order to be able to decide on the safest way of feeding and minimize the complications of stroke using the National Institutes of Health Stroke Scale (NHISS). Methods: Clinical assessment of swallowing was performed in 50 patients admitted to the emergency unit of the University Hospital, Faculty of Medicine of Ribeirao Preto, Sao Paulo, Brazil, with a diagnosis of ischemic stroke, within 48 h after the beginning of symptoms. Patients, 25 females and 25 males with a mean age of 64.90 years (range 26-91 years), were evaluated consecutively. An anamnesis was taken before the patient's participation in the study in order to exclude a prior history of deglutition difficulties. For the functional assessment of swallowing, three food consistencies were used, i.e. pasty, liquid and solid. After clinical evaluation, we concluded whether there was dysphagia. For statistical analysis we used the Fisher exact test, verifying the association between the variables. To assess whether the NIHSS score characterizes a risk factor for dysphagia, a receiver operational characteristics curve was constructed to obtain characteristics for sensitivity and specificity. Results: Dysphagia was present in 32% of the patients. The clinical evaluation is a reliable method of detection of swallowing difficulties. However, the predictors of risk for the swallowing function must be balanced, and the level of consciousness and the presence of preexisting comorbidities should be considered. Gender, age and cerebral hemisphere involved were not significantly associated with the presence of dysphagia. NIHSS, Glasgow Coma Scale, and speech and language changes had a statistically significant predictive value for the presence of dysphagia. Conclusions: The NIHSS is highly sensitive (88%) and specific (85%) in detecting dysphagia; a score of 12 may be considered as the cutoff value. The creation of an algorithm to detect dysphagia in acute ischemic stroke appears to be useful in selecting the optimal feeding route while awaiting a specialized evaluation. Copyright (C) 2012 S. Karger AG, Basel