17 resultados para Implant surface treatment
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Surface treatment interferes with the primary stability of dental implants because it promotes a chemical and micromorphological change on the surface and thus stimulates osseointegration. This study aimed to evaluate the effects of different surface treatments on primary stability by analyzing insertion torque (IT) and pullout force (PF). Eight samples of implants with different surface treatments (TS - external hexagon with acid surface treatment; and MS - external hexagon, machined surface), all 3.75 mm in diameter x 11.5 mm in length, were inserted into segments of artificial bones. The IT of each sample was measured by an electronic torquemeter, and then the pullout test was done with a universal testing machine. The results were subjected to ANOVA (p < 0.05), followed by Tukey's test (p < 0.05). The IT results showed no statistically significant difference, since the sizes of the implants used were very similar, and the bone used was not highly resistant. The PF values (N) were, respectively, TS = 403.75 +/- 189.80 and MS = 276.38 +/- 110.05. The implants were shown to be different in terms of the variables of maximum force (F = 4.401, p = 0.0120), elasticity in maximum flexion (F = 3.672, p = 0.024), and relative stiffness (F = 4.60, p = 0.01). In this study, external hexagonal implants with acid surface treatment showed the highest values of pullout strength and better stability, which provide greater indication for their use.
Resumo:
The effect of CO2 continuous laser irradiation on the surface properties of veneering porcelains has already been tested. The surface observed after laser irradiation is similar to that achieved by auto-glaze in terms of roughness and color parameters (Sgura R, et al. Dental Materials 2011;27(Suppl. 1):e72–73). The purpose of this study was to analyze the surface porosity of porcelain discs after CO2 laser treatment and compare it to auto-glaze treatment, in furnace. A morphological analysis of the porcelain surface was conducted using atomic force microscopy (AFM) and conventional optical microscopy (OM).
Resumo:
Objectives: This study compared the biomechanical fixation and bone-to-implant contact (BIC) of implants with different surfaces treatment (experimental resorbable blasting media-processed nanometer roughness scale surface, and control dual acid-etched) in a dog model. Material and methods: Surface characterization was made in six implants by means of scanning electron microscopic imaging, atomic force microscopy to evaluate roughness parameters, and X-ray photoelectron spectroscopy (XPS) for chemical assessment. The animal model comprised the bilateral placement of control (n = 24) and experimental surface (n = 24) implants along the proximal tibiae of six mongrel dogs, which remained in place for 2 or 4 weeks. Half of the specimens were biomechanically tested (torque), and the other half was subjected to histomorphologic/ morphometric evaluation. BIC and resistance to failure measures were each evaluated as a function of time and surface treatment in a mixed model ANOVA. Results: Surface texturing was significantly higher for the experimental compared with the control surface. The survey XPS spectra detected O, C, Al, and Ti at the control group, and Ca (similar to 0.2-0.9%) and P (similar to 1.7-4.1%) besides O, C, Al, and Ti at experimental surfaces. While no statistical difference in BIC was found between experimental and control surfaces or between 2 and 4 weeks in vivo, both longer time and use of experimental surface significantly increased resistance to failure. Conclusions: The experimental surface resulted in enhanced biomechanical fixation but comparable BIC relative to control, suggesting higher bone mechanical properties around the experimental implants.
Resumo:
Recent studies in animals have shown pronounced resorption of the buccal bone plate after immediate implantation. The use of flapless surgical procedures prior to the installation of immediate implants, as well as the use of synthetic bone graft in the gaps represent viable alternatives to minimize buccal bone resorption and to favor osseointegration. The aim of this study was to evaluate the healing of the buccal bone plate following immediate implantation using the flapless approach, and to compare this process with sites in which a synthetic bone graft was or was not inserted into the gap between the implant and the buccal bone plate. Lower bicuspids from 8 dogs were bilaterally extracted without the use of flaps, and 4 implants were installed in the alveoli in each side of the mandible and were positioned 2.0 mm from the buccal bone plate (gap). Four groups were devised: 2.0-mm subcrestal implants (3.3 x 8 mm) using bone grafts (SCTG), 2.0-mm subcrestal implants without bone grafts (SCCG), equicrestal implants (3.3 x 10 mm) with bone grafts (EGG), and equicrestal implants without bone grafts (ECCG). One week following the surgical procedures, metallic prostheses were installed, and within 12 weeks the dogs were sacrificed. The blocks containing the individual implants were turned sideways, and radiographic imaging was obtained to analyze the remodeling of the buccal bone plate. In the analysis of the resulting distance between the implant shoulder and the bone crest, statistically significant differences were found in the SCTG when compared to the ECTG (P = .02) and ECCG (P = .03). For mean value comparison of the resulting linear distance between the implant surface and the buccal plate, no statistically significant difference was found among all groups (P > .05). The same result was observed in the parameter for presence or absence of tissue formation between the implant surface and buccal plate. Equicrestally placed implants, in this methodology, presented little or no loss of the buccal bone. The subcrestally positioned implants presented loss of buccal bone, even though synthetic bone graft was used. The buccal bone, however, was always coronal to the implant shoulder.
Resumo:
Objectives: To investigate the effect of Si addition on a nanometer-scale roughness Ca and P implant surfaces in a canine tibia model by biomechanical and histomorphometric evaluations. Material and methods: The implant surfaces comprised a resorbable media CaP microblasted (control) and a CaP resorbable media + silica-boost microblasted (experimental) surfaces. Surfaces were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and optical interferometry (IFM) down to the nanometric level. The animal model involved the bilateral placement of control (n = 24) and experimental surface (n = 24) implants along the proximal tibiae of six dogs, remaining in vivo for 2 or 4 weeks. After euthanization, half of the specimens were torquedto- interface failure, and the other half was subjected to histomorphologic and bone-to-implant contact (BIC) evaluation. Torque and BIC statistical evaluation was performed by the Friedman test at 95% level of significance, and comparisons between groups was performed by the Dunn test. Results: IFM and SEM observations depicted comparable roughness parameters for both implant surfaces on the micrometer and nanometer scales. XPS analysis revealed similar chemical composition, except for the addition of Si on the experimental group. Torque-to-interface failure and BIC mean values showed no significant differences (P = 0.25 and 0.51, respectively) at both 2- and 4-week evaluation points for experimental and control groups. Early bone healing histomorphologic events were similar between groups. Conclusions: The experimental surface resulted in not significantly different biomechanical fixation and BIC relative to control. Both surfaces were biocompatible and osseoconductive.
Resumo:
Objective: To evaluate the masticatory efficiency of patients rehabilitated with conventional dentures (CDs) or implant-retained mandibular overdentures. Background: Despite the evident benefits of implants on mastication as assessed by subjective patient-based outcomes, the extent of implant overdenture treatment effect on food comminution is not well established. Materials and methods: A randomised clinical trial was carried out with 29 completely edentulous patients divided into two groups. The first group was rehabilitated with a mandibular overdenture retained by two splinted implants with bar-clip system, while the second group was rehabilitated with a mandibular CD. Both groups also were rehabilitated with maxillary CDs. Masticatory efficiency and patient satisfaction were assessed 3 months after denture insertion. Masticatory efficiency was evaluated through the colorimetric method with the beads as the artificial test-food. Comparisons for masticatory efficiency and patient satisfaction were performed using Student's t-test (alpha = 0.05). Results: No significant statistical difference was found for masticatory efficiency (p = 0.198). Patient overall satisfaction was significantly higher for the mandibular overdenture (p < 0.001). In addition, mandibular overdenture patients were significantly more satisfied with chewing experience (p < 0.05) and retention of the lower denture (p < 0.005). Conclusion: The results of this study suggest that mandibular overdenture significantly improves chewing experience, although limited effect on masticatory efficiency has been observed.
Resumo:
A myriad of titanium (Ti) surface modifications has been proposed to hasten the osseointegration. In this context, the aim of this study was to perform histomorphometric, cellular, and molecular analyses of the bone tissue grown in close contact with Ti implants treated by anodic spark deposition (ASD-AK). Acid-etched (AE) Ti implants either untreated or submitted to ASD-AK were placed into dog mandibles and retrieved at 3 and 8 weeks. It was noticed that both implants, AE and ASD-AK, were osseointegrated at 3 and 8 weeks. Histomorphometric analysis showed differences between treatments only for bone-to-implant contact, being higher on AE implants. Although not backed by histomorphometric results, gene expression of key bone markers was higher for bone grown in close contact with ASD-AK and for cells harvested from these fragments and cultured until subconfluence. Cell proliferation at days 7 and 10 and alkaline phosphatase activity at day 10 was higher on AE surfaces. No statistical significant difference was noticed for extracellular matrix mineralization at 17 days. Our results have shown that the Ti fixtures treated by ASD-AK allowed in vivo osseointegration and induced higher expression of key markers of osteoblast phenotype, suggesting that this surface treatment could be considered to produce implants for clinical applications. (c) 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 100A:30923098, 2012.
Resumo:
This study evaluated the effectiveness of different sealants applied to a nanofiller composite resin. Forty specimens of Filtek Z-350 were obtained after inserting the material in a 6x3 mm stainless steel mold followed by light activation for 20 s. The groups were divided (n=10) according to the surface treatment applied: Control group (no surface treatment), Fortify, Fortify Plus and Biscover LV. The specimens were subjected to simulated toothbrushing using a 200 g load and 250 strokes/min to simulate 1 week, 1, 3 and 6 months and 1 and 3 years in the mouth, considering 10,000 cycles equivalent to 1 year of toothbrushing. Oral-B soft-bristle-tip toothbrush heads and Colgate Total dentifrice at a 1:2 water-dilution were used. After each simulated time, surface roughness was assessed in random triplicate readings. The data were submitted to two-way ANOVA and Tukey's test at a 95% confidence level. The specimens were observed under scanning electron microscopy (SEM) after each toothbrushing cycle. The control group was not significantly different (p>0.05) from the other groups, except for Fortify Plus (p<0.05), which was rougher. No significant differences (p>0.05) were observed at the 1-month assessment between the experimental and control groups. Fortify and Fortify Plus presented a rougher surface over time, differing from the baseline (p<0.05). Biscover LV did not differ (p>0.05) from the baseline at any time. None of the experimental groups showed a significantly better performance (p>0.05) than the control group at any time. SEM confirmed the differences found during the roughness testing. Surface penetrating sealants did not improve the roughness of nanofiller composite resin.
Resumo:
Potassium fluorrichterite (KNaCaMg5Si8O22F2) glass-ceramics were modified by either increasing the concentration of calcium (GC5) or by the addition of P2O5 (GP2). Rods (2 x 4 mm) of stoichiometric fluorrichterite (GST), modified compositions (GC5 and GP2) and 45S5 bioglass, which was used as the reference material, were prepared using a conventional lost-wax technique. Osteoconductivity was investigated by implantation into healing defects in the midshaft of rabbit femora. Specimens were harvested at 4 and 12 weeks following implantation and tissue response was investigated using computed microtomography (mu CT) and histological analyses. The results showed greatest bone to implant contact in the 45S5 bioglass reference material at 4 and 12 weeks following implantation, however, GST, GC5 and GP2 all showed direct bone tissue contact with evidence of new bone formation and cell proliferation along the implant surface into the medullary space. There was no evidence of bone necrosis or fibrous tissue encapsulation around the test specimens. Of the modified potassium fluorrichterite compositions, GP2 showed the greatest promise as a bone substitute material due to its osteoconductive potential and superior mechanical properties.
Resumo:
An easy way to determine norepinephrine (NE) in biological fluid using a platinum ultramicroelectrode array (Pt-UMEAs) is described. Issues related to UME electrode surface treatment and characterizations are also addressed. At optimized experimental conditions the dynamic concentration range was 1.0 to 10.0 mu mol?L-1 with a detection limit of 40.5 nmol?L-1. The repeatability of current responses for injections of 5 mu mol?L-1 NE was evaluated to be 4.0?% (n=10). This approach obtained excellent sensitivity, a reliable calibration profile and stable electrochemical response for norepinephrine detection. The content of NE in urine samples without any preconcentration, purification, or pretreatment step, was successfully analyzed by the standard addition method using the Pt-UMEAs.
Resumo:
Objective: To describe the healing of marginal defects below or above 1 mm of dimension around submerged implants in a dog model. Material and methods: In 12 Labrador dogs, all mandibular premolars and first molars were extracted bilaterally. After 3 months of healing, full-thickness flaps were elevated in the edentulous region of the right side of the mandible. Two recipient sites were prepared and the marginal 5mm were widened to such an extent to obtain, after implant installation, a marginal gap of 0.5mm at the mesial site (small defect) and of 1.25mm at the distal site (large defect). Titanium healing caps were affixed to the implants and the flaps were sutured allowing a fully submerged healing. The experimental procedures were subsequently performed in the left side of the mandible. The timing of the experiments and sacrifices were planned in such a way to obtain biopsies representing the healing after 5, 10, 20 and 30 days. Ground sections were prepared and histomorphometrically analyzed. Results: The filling of the defect with newly formed bone was incomplete after 1 month of healing in all specimens. Bone formation occurred from the base and the lateral walls of the defects. A larger volume of new bone was formed in the large compared with the small defects. Most of the new bone at the large defect was formed between the 10- and the 20-day period of healing. After 1 month of healing, the outline of the newly formed bone was, however, located at a similar distance from the implant surface (about 0.4mm) at both defect types. Only minor newly formed bone in contact with the implant, starting from the base of the defects, was seen at the large defects (about 0.8mm) while a larger amount was detected at the small defects (about 2.2 mm). Conclusion: Marginal defects around titanium implants appeared to regenerate in 20-30 days by means of a distance osteogenesis. The bone fill of the defects was, however, incomplete after 1 month.
Resumo:
There are currently many types of protective materials for reinforced concrete structures and the influence of these materials in the chloride diffusion coefficient and water penetration still needs more research. The aim of this work is to analyze the contributions regarding the typical three surface concrete protection systems (coatings, linings and pore blockers) and discusses the results of three pore blockers (sodium silicate) tested in this work. To this end, certain tests were used: one involving permeability mechanism (low pressure-immersion absorption), one involving capillary water absorption, and the last, a migration test used to estimate the effective chloride diffusion coefficient in saturated condition. Results indicated reduction in chloride diffusion coefficients and capillary water absorption, therefore, restrictions to water penetration from external environmental. As a consequence, a reduction of the corrosion kinetics and a control of the chloride ingress are expected.
Resumo:
Background: Accelerating bone healing around dental implants can reduce the long-term period between the insertion of implants and functional rehabilitation. Objective: This in vivo study evaluated the effect of a constant electromagnetic field (CEF) on bone healing around dental implants in dogs. Materials and methods: Eight dental implants were placed immediately after extraction of the first premolar and molar teeth on the mandible of two male dogs and divided into experimental (CEF) and control groups. A CEF at magnetic intensity of 0.8 mT with a pulse width of 25 mu s and frequency of 1.5 MHz was applied on the implants for 20 min per day for 2 weeks. Result and conclusion: After qualitative histological analysis, a small quantity of newly formed bone was observed in the gap between the implant surface and alveolar bone in both groups.
Resumo:
Objectives: To compare the biomechanical fixation and histomorphometric parameters between two implant surfaces: non-washed resorbable blasting media (NWRBM) and alumina-blasted/acid-etched (AB/AE), in a dog model. Material and methods: The surface topography was assessed by scanning electron microscopy, optical interferometry and chemistry by X-ray photoelectron spectroscopy (XPS). Six beagle dogs of similar to 1.5 years of age were utilized and each animal received one implant of each surface per limb (distal radii sites). After a healing period of 3 weeks, the animals were euthanized and half of the implants were biomechanically tested (removal torque) and the other half was referred to nondecalcified histology processing. Histomorphometric analysis considered bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO). Following data normality check with the Kolmogorov-Smirnov test, statistical analysis was performed by paired t-tests at 95% level of significance. Results: Surface roughness parameters Sa (average surface roughness) and Sq (mean root square of the surface) were significantly lower for the NWRBM compared with AB/ AE. The XPS spectra revealed the presence of Ca and P in the NWRBM. While no significant differences were observed for both BIC and BAFO parameters (P>0.35 and P>0.11, respectively), a significantly higher level of torque was observed for the NWRBM group (P = 0.01). Bone morphology was similar between groups, which presented newly formed woven bone in proximity with the implant surfaces. Conclusion: A significant increase in early biomechanical fixation was observed for implants presenting the NWRBM surface.
Resumo:
Background: The aim of this study was to compare the shear bond strength between Ni-Cr alloy specimens bonded to air-abraded Ni-Cr, bur-abraded Ni-Cr, etched ceramic and etched enamel substrates using the resin cements RelyX ARC or Enforce. Materials and methods: Ni-Cr specimens were made and sandblasted with Al2O3 airborne-particles. Disc-shaped patterns were made for each of the four experimental substrates: Ni-Cr treated with Al2O3 airborne-particles, Ni-Cr treated with diamond bur abrasion, etched enamel and etched ceramic. Results: Significant differences in shear bond strength were found between the different materials and luting agents evaluated. The Ni-Cr alloy cylinders bonded to Ni-Cr surfaces sandblasted with 50 lm Al2O3 particles and bonded with Enforce achieved the highest bond strength when compared with other substrates (28.9 MPa, p < 0.05). Bur-abraded metal discs had lowest values, regardless the cement used (2.9 and 6.9 MPa for RelyX and Enforce, respectively). Etched enamel and etched ceramic had similar shear bond strengths within cement groups and performed better when RelyX was used. Conclusions: Bonding Ni-Cr to Ni-Cr and ceramic may result in similar and higher bond strength when compared to Ni-Cr/enamel bonding. For metal/metal bonding, higher shear bond strength was achieved with resin cement Enforce, and for metal/ceramic and metal/enamel bonding, RelyX had higher results.