5 resultados para Immersed Boundary Method
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This paper presents an optimum user-steered boundary tracking approach for image segmentation, which simulates the behavior of water flowing through a riverbed. The riverbed approach was devised using the image foresting transform with a never-exploited connectivity function. We analyze its properties in the derived image graphs and discuss its theoretical relation with other popular methods such as live wire and graph cuts. Several experiments show that riverbed can significantly reduce the number of user interactions (anchor points), as compared to live wire for objects with complex shapes. This paper also includes a discussion about how to combine different methods in order to take advantage of their complementary strengths.
Resumo:
This work develops a computational approach for boundary and initial-value problems by using operational matrices, in order to run an evolutive process in a Hilbert space. Besides, upper bounds for errors in the solutions and in their derivatives can be estimated providing accuracy measures.
Resumo:
The main feature of partition of unity methods such as the generalized or extended finite element method is their ability of utilizing a priori knowledge about the solution of a problem in the form of enrichment functions. However, analytical derivation of enrichment functions with good approximation properties is mostly limited to two-dimensional linear problems. This paper presents a procedure to numerically generate proper enrichment functions for three-dimensional problems with confined plasticity where plastic evolution is gradual. This procedure involves the solution of boundary value problems around local regions exhibiting nonlinear behavior and the enrichment of the global solution space with the local solutions through the partition of unity method framework. This approach can produce accurate nonlinear solutions with a reduced computational cost compared to standard finite element methods since computationally intensive nonlinear iterations can be performed on coarse global meshes after the creation of enrichment functions properly describing localized nonlinear behavior. Several three-dimensional nonlinear problems based on the rate-independent J (2) plasticity theory with isotropic hardening are solved using the proposed procedure to demonstrate its robustness, accuracy and computational efficiency.
Resumo:
This paper addresses the numerical solution of random crack propagation problems using the coupling boundary element method (BEM) and reliability algorithms. Crack propagation phenomenon is efficiently modelled using BEM, due to its mesh reduction features. The BEM model is based on the dual BEM formulation, in which singular and hyper-singular integral equations are adopted to construct the system of algebraic equations. Two reliability algorithms are coupled with BEM model. The first is the well known response surface method, in which local, adaptive polynomial approximations of the mechanical response are constructed in search of the design point. Different experiment designs and adaptive schemes are considered. The alternative approach direct coupling, in which the limit state function remains implicit and its gradients are calculated directly from the numerical mechanical response, is also considered. The performance of both coupling methods is compared in application to some crack propagation problems. The investigation shows that direct coupling scheme converged for all problems studied, irrespective of the problem nonlinearity. The computational cost of direct coupling has shown to be a fraction of the cost of response surface solutions, regardless of experiment design or adaptive scheme considered. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The generalized finite element method (GFEM) is applied to a nonconventional hybrid-mixed stress formulation (HMSF) for plane analysis. In the HMSF, three approximation fields are involved: stresses and displacements in the domain and displacement fields on the static boundary. The GFEM-HMSF shape functions are then generated by the product of a partition of unity associated to each field and the polynomials enrichment functions. In principle, the enrichment can be conducted independently over each of the HMSF approximation fields. However, stability and convergence features of the resulting numerical method can be affected mainly by spurious modes generated when enrichment is arbitrarily applied to the displacement fields. With the aim to efficiently explore the enrichment possibilities, an extension to GFEM-HMSF of the conventional Zienkiewicz-Patch-Test is proposed as a necessary condition to ensure numerical stability. Finally, once the extended Patch-Test is satisfied, some numerical analyses focusing on the selective enrichment over distorted meshes formed by bilinear quadrilateral finite elements are presented, thus showing the performance of the GFEM-HMSF combination.