7 resultados para ISOTHERMAL TUBES
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This paper presents an experimental study on two-phase flow patterns and pressure drop of R134a inside a 15.9 mm ID tube containing twisted-tape inserts. Experimental results were obtained in a horizontal test section for twisted-tape ratios of 3, 4, 9 and 14, mass velocities ranging from 75 to 250 kg/m(2) s and saturation temperatures of 5 and 15 degrees C. An unprecedented discussion on two-phase flow patterns inside tubes containing twisted-tape inserts is presented and the flow pattern effects on the frictional pressure drop are carefully discussed. Additionally, a new method to predict the frictional pressure drop during two-phase flow inside tubes containing twisted-tape inserts is proposed. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
(Isothermal seed germination of Adenanthera pavonina). This work reports aspects of seed germination at different temperatures of Adenanthera pavonina L., a woody Southeast Asian Leguminosae. Germination was studied by measuring the final percentages, the rate, the rate variance and the synchronisation of the individual seeds calculated by the minimal informational entropy of frequencies distribution of seed germination. Overlapping the germinability range with the range for the highest values of germination rates and the minimal informational entropy of frequencies distribution of seed germination, we found that the best temperature for the germination of A. pavonina seeds is 35 degrees C. The slope mu of the Arrhenius plot of the germination rates is positive for T < 35 degrees C and negative for T > 35 degrees C. The activation enthalpies, estimated from closely-spaced points, shows that vertical bar Delta H-vertical bar < 12 Cal mol(-1) occur for temperatures in the range between 25 degrees C and 40 degrees C. The ecological implication of these results are that this species may germinate very fast in tropical areas during the summer season. This may be an advantage to the establishment of this species under the climatic conditions in those areas.
Resumo:
This paper presents experimental results for flow boiling heat transfer coefficient and critical heat flux (CHF) in small flattened tubes. The tested flattened tubes have the same equivalent internal diameter of 2.2 mm, but different aspect height/width ratios (H/W) of 1/4, 1/2, 2 and 4. The experimental data were compared against results for circular tubes using R134a and R245fa as working fluids at a nominal saturation temperature of 31 degrees C. For mass velocities higher than 200 kg/m(2)s, the flattened and circular tubes presented similar heat transfer coefficients. Such a behavior is related to the fact that stratification effects are negligible under conditions of higher mass velocities. Heat transfer correlations from the literature, usually developed using only circular-channel experimental data, predicted the flattened tube results for mass velocities higher than 200 kg/m(2)s with mean absolute error lower than 20% using the equivalent diameter to account for the geometry effect. Similarly, the critical heat flux results were found to be independent of the tube aspect ratio when the same equivalent length was kept. Equivalent length is a new parameter which takes into account the channel heat transfer area. The CHF correlations for round tubes predicted the flattened tube data relatively well when using the equivalent diameter and length. Furthermore, a new proposed CHF correlation predicted the present flattened tube data with a mean absolute error of 5%. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The theoretical E-curve for the laminar flow of non-Newtonian fluids in circular tubes may not be accurate for real tubular systems with diffusion, mechanical vibration, wall roughness, pipe fittings, curves, coils, or corrugated walls. Deviations from the idealized laminar flow reactor (LFR) cannot be well represented using the axial dispersion or the tanks-in-series models of residence time distribution (RTD). In this work, four RTD models derived from non-ideal velocity profiles in segregated tube flow are proposed. They were used to represent the RTD of three tubular systems working with Newtonian and pseudoplastic fluids. Other RTD models were considered for comparison. The proposed models provided good adjustments, and it was possible to determine the active volumes. It is expected that these models can be useful for the analysis of LFR or for the evaluation of continuous thermal processing of viscous foods.
Resumo:
This work reports aspects of seed germination at different temperatures of Adenanthera pavonina L., a woody Southeast Asian Leguminosae. Germination was studied by measuring the final percentages, the rate, the rate variance and the synchronisation of the individual seeds calculated by the minimal informational entropy of frequencies distribution of seed germination. Overlapping the germinability range with the range for the highest values of germination rates and the minimal informational entropy of frequencies distribution of seed germination, we found that the best temperature for the germination of A. pavonina seeds is 35 ºC. The slope µ of the Arrhenius plot of the germination rates is positive for T < 35 ºC and negative for T > 35 ºC. The activation enthalpies, estimated from closely-spaced points, shows that |ΔH-| < 12 Cal mol-1 occur for temperatures in the range between 25 ºC and 40 ºC. The ecological implication of these results are that this species may germinate very fast in tropical areas during the summer season. This may be an advantage to the establishment of this species under the climatic conditions in those areas.
Resumo:
This paper shows theoretical models (analytical formulations) to predict the mechanical behavior of thick composite tubes and how some parameters can influence this behavior. Thus, firstly, it was developed the analytical formulations for a pressurized tube made of composite material with a single thick ply and only one lamination angle. For this case, the stress distribution and the displacement fields are investigated as function of different lamination angles and reinforcement volume fractions. The results obtained by the theoretical model are physic consistent and coherent with the literature information. After that, the previous formulations are extended in order to predict the mechanical behavior of a thick laminated tube. Both analytical formulations are implemented as a computational tool via Matlab code. The results obtained by the computational tool are compared to the finite element analyses, and the stress distribution is considered coherent. Moreover, the engineering computational tool is used to perform failure analysis, using different types of failure criteria, which identifies the damaged ply and the mode of failure.
Resumo:
We report on the formation of self-assembled meso-tetrakis (p-sulfonatofenyl) porphyrin (H2 TPP'S POT. 4-''IND. 4') tubes stabilized by gold nanoparticles (NPs) in basic solution and on their spectroscopic chareterization. The role of the gold NPs in the aggregation dynamics of free-base sulfonated porphyrin (H2TPP'S POT. 4-''IND. 4') is also investigated. The direct conjugation of the gold NPs to the H2TPPS4 molecule quenches the fluorescence intensity, while absorption peaks are blue-shifted, indicating predominant H-type aggregation. It is observed that porphyrin molecules adsorbed on the surface of the gold NP interact and form tubes of maximum diameter ∼1.5 μm and length >100 μm. Steady-state and time-resolved spectroscopic techniques confirm nonradiative energy transfer from porphyrin to gold NP.