4 resultados para INFORMATION RECOVERY
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Combining data from multiple analytical platforms is essential for comprehensive study of the molecular phenotype (metabotype) of a given biological sample. The metabolite profiles generated are intrinsically dependent on the analytical platforms, each requiring optimization of instrumental parameters, separation conditions, and sample extraction to deliver maximal biological information. An in-depth evaluation of extraction protocols for characterizing the metabolome of the hepatobiliary fluke Fasciola hepatica, using ultra performance liquid chromatography and capillary electrophoresis coupled with mass spectroscopy is presented. The spectrometric methods were characterized by performance, and metrics of merit were established, including precision, mass accuracy, selectivity, sensitivity, and platform stability. Although a core group of molecules was common to all methods, each platform contributed a unique set, whereby 142 metabolites out of 14,724 features were identified. A mixture design revealed that the chloroform:methanol:water proportion of 15:59:26 was globally the best composition for metabolite extraction across UPLC-MS and CE-MS platforms accommodating different columns and ionization modes. Despite the general assumption of the necessity of platform-adapted protocols for achieving effective metabotype characterization, we show that an appropriately designed single extraction procedure is able to fit the requirements of all technologies. This may constitute a paradigm shift in developing efficient protocols for high-throughput metabolite profiling with more-general analytical applicability.
Resumo:
The Amazon basin is a region of constant scientific interest due to its environmental importance and its biodiversity and climate on a global scale. The seasonal variations in water volume are one of the examples of topics studied nowadays. In general, the variations in river levels depend primarily on the climate and physics characteristics of the corresponding basins. The main factor which influences the water level in the Amazon Basin is the intensive rainfall over this region as a consequence of the humidity of the tropical climate. Unfortunately, the Amazon basin is an area with lack of water level information due to difficulties in access for local operations. The purpose of this study is to compare and evaluate the Equivalent Water Height (Ewh) from GRACE (Gravity Recovery And Climate Experiment) mission, to study the connection between water loading and vertical variations of the crust due to the hydrologic. In order to achieve this goal, the Ewh is compared with in-situ information from limnimeter. For the analysis it was computed the correlation coefficients, phase and amplitude of GRACE Ewh solutions and in-situ data, as well as the timing of periods of drought in different parts of the basin. The results indicated that vertical variations of the lithosphere due to water mass loading could reach 7 to 5 cm per year, in the sedimentary and flooded areas of the region, where water level variations can reach 10 to 8 m.
Resumo:
Walking on irregular surfaces and in the presence of unexpected events is a challenging problem for bipedal machines. Up to date, their ability to cope with gait disturbances is far less successful than humans': Neither trajectory controlled robots, nor dynamic walking machines (Limit CycleWalkers) are able to handle them satisfactorily. On the contrary, humans reject gait perturbations naturally and efficiently relying on their sensory organs that, if needed, elicit a recovery action. A similar approach may be envisioned for bipedal robots and exoskeletons: An algorithm continuously observes the state of the walker and, if an unexpected event happens, triggers an adequate reaction. This paper presents a monitoring algorithm that provides immediate detection of any type of perturbation based solely on a phase representation of the normal walking of the robot. The proposed method was evaluated in a Limit Cycle Walker prototype that suffered push and trip perturbations at different moments of the gait cycle, providing 100% successful detections for the current experimental apparatus and adequately tuned parameters, with no false positives when the robot is walking unperturbed.
Resumo:
The Amazon basin is a region of constant scientific interest due to its environmental importance and its biodiversity and climate on a global scale. The seasonal variations in water volume are one of the examples of topics studied nowadays. In general, the variations in river levels depend primarily on the climate and physics characteristics of the corresponding basins. The main factor which influences the water level in the Amazon Basin is the intensive rainfall over this region as a consequence of the humidity of the tropical climate. Unfortunately, the Amazon basin is an area with lack of water level information due to difficulties in access for local operations. The purpose of this study is to compare and evaluate the Equivalent Water Height (Ewh) from GRACE (Gravity Recovery And Climate Experiment) mission, to study the connection between water loading and vertical variations of the crust due to the hydrologic. In order to achieve this goal, the Ewh is compared with in-situ information from limnimeter. For the analysis it was computed the correlation coefficients, phase and amplitude of GRACE Ewh solutions and in-situ data, as well as the timing of periods of drought in different parts of the basin. The results indicated that vertical variations of the lithosphere due to water mass loading could reach 7 to 5 cm per year, in the sedimentary and flooded areas of the region, where water level variations can reach 10 to 8 m.