6 resultados para INDUCED NEPHROPATHY

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background-It remains uncertain whether acetylcysteine prevents contrast-induced acute kidney injury. Methods and Results-We randomly assigned 2308 patients undergoing an intravascular angiographic procedure with at least 1 risk factor for contrast-induced acute kidney injury (age >70 years, renal failure, diabetes mellitus, heart failure, or hypotension) to acetylcysteine 1200 mg or placebo. The study drugs were administered orally twice daily for 2 doses before and 2 doses after the procedure. The allocation was concealed (central Web-based randomization). All analysis followed the intention-to-treat principle. The incidence of contrast-induced acute kidney injury (primary end point) was 12.7% in the acetylcysteine group and 12.7% in the control group (relative risk, 1.00; 95% confidence interval, 0.81 to 1.25; P = 0.97). A combined end point of mortality or need for dialysis at 30 days was also similar in both groups (2.2% and 2.3%, respectively; hazard ratio, 0.97; 95% confidence interval, 0.56 to 1.69; P = 0.92). Consistent effects were observed in all subgroups analyzed, including those with renal impairment. Conclusions-In this large randomized trial, we found that acetylcysteine does not reduce the risk of contrast-induced acute kidney injury or other clinically relevant outcomes in at-risk patients undergoing coronary and peripheral vascular angiography.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effect of Gd-chelate on renal function, iron parameters and oxidative stress in rats with CRF and a possible protective effect of the antioxidant N-Acetylcysteine (NAC). Male Wistar rats were submitted to 5/6 nephrectomy (Nx) to induced CRF. An ionic - cyclic Gd (Gadoterate Meglumine) was administrated (1.5 mM/KgBW, intravenously) 21 days after Nx. Clearance studies were performed in 4 groups of anesthetized animals 48 hours following Gd-chelate administration: 1 - Nx (n = 7); 2 - Nx+NAC (n = 6); 3 - Nx+Gd (n = 7); 4 - Nx+NAC+Gd (4.8 g/L in drinking water), initiated 2 days before Gd-chelate administration and maintained during 4 days (n = 6). This group was compared with a control. We measured glomerular filtration rate, GFR (inulin clearance, ml/min/kg BW), proteinuria (mg/24 hs), serum iron (mu g/dL); serum ferritin (ng/mL); transferrin saturation (%), TIBC (mu g/dL) and TBARS (nmles/ml). Normal rats treated with the same dose of Gd-chelate presented similar GFR and proteinuria when compared with normal controls, indicating that at this dose Gd-chelate is not nephrotoxic to normal rats. Gd-chelate administration to Nx-rats results in a decrease of GFR and increased proteinuria associated with a decrease in TIBC, elevation of ferritin serum levels, transferrin oversaturation and plasmatic TBARS compared with Nx-rats. The prophylactic treatment with NAC reversed the decrease in GFR and the increase in proteinuria and all alterations in iron parameters and TBARS induced by Gd-chelate. NAC administration to Nx rat did not modify the inulin clearance and iron kinetics, indicating that the ameliorating effect of NAC was specific to Gd-chelate. These results suggest that NAC can prevent Gd-chelate nephrotoxicity in patients with chronic renal failure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Contrastes radiológicos iodados – CI são causa de lesão renal aguda – LRA. Avaliar o efeito renoprotetor do bicarbonato de sódio (Bic) sobre a função renal (clearance de creatinina, Jaff é, Clcr-ml/min/100g) e o perfi l oxidativo (excreção de peróxidos, PU e de malondealdeído urinários, FOX-2 e TBARs, nmol/mgCr ) em ratos com CI. Ratos machos adultos Wistar, 250-300g, tratados 1x/dia, por 5 dias, foram divididos nos grupos: Salina (solução salina 0,9%, 3ml/kg/dia, intraperitoneal-i.p.); CI (ioxitalamato de meglumina e sódio, 3ml/kg, i.p); Bic+Salina (Bic 3ml/kg, i.p, 1 hora antes e 1 hora depois da Salina); Bic+CI (Bic 3ml/ kg, i.p, 1 hora antes e 1 hora depois do CI). CI induziu LRA e o Bic confi rmou seu efeito renoprotetor antioxidante (Clcr/TBARs/PU Salina: 0,59±0,03/0,11±0,02/1,29±0,24 vs Bic+Salina 0,58±0,03/0,13±0,02/1,32±0,64 vs CI 0,22±0,02A/0,19±0,02A/4,77±0, 24A vs Bic+CI 0,51±0,04B/0,13±0,3B/1,80± 0,04B, A/B p<0,05). O Bic confi rmou efeito protetor na LRA por CI, podendo ser considerado como possibilidade terapêutica para pacientes submetidos a CI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background/Aims: The effects of cigarette smoke (CS) on cyclosporine (CsA)-induced nephrotoxicity are poorly studied. This study aims to assess the effects of previous exposure to CS on CsA nephrotoxicity. Methods: Rats were either exposed to CS or sham (S) procedures for 10 min twice a day for 20 weeks. From the 16th to the 20th week, they received a low-salt diet. Beginning with the 17th week, they were given 2.5 mg/day CsA or vehicle (VH) for 3 weeks. The final groups were VH/CS, CsA/CS, VH/S, and CsA/S. On day 141, glomerular filtration rate (GFR), renal blood flow (RBF), renal vascular resistance (RVR), tubulointerstitial fibrosis, and CsA blood levels were measured and immunohistochemistry was analyzed for renal alpha-smooth muscle actin (SMA), nitrotyrosine, and vimentin. Results: CsA decrease in GFR was enhanced by CS exposure. CsA associated with CS induced higher periglomerular alpha-SMA and renal nitrotyrosine expression. CsA decreased RBF, but increased RVR, tubulointerstitial fibrosis, and alpha-SMA and renal vimentin expression. These changes and the CsA blood levels were not affected by CS exposure. Conclusion: CS aggravated the CsA-induced impairment of GFR and CS associated with CsA caused the development of periglomerular structural lesions and oxidative stress in a rat model of CsA nephrotoxicity. Copyright (C) 2012 S. Karger AG, Basel

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IgA nephropathy (IgAN), the most common primary glomerulonephritis worldwide, has significant morbidity and mortality as 20-40% of patients progress to end-stage renal disease within 20 years of onset. In order to gain insight into the molecular mechanisms involved in the progression of IgAN, we systematically evaluated renal biopsies from such patients. This showed that the MAPK/ERK signaling pathway was activated in the mesangium of patients presenting with over 1 g/day proteinuria and elevated blood pressure, but absent in biopsy specimens of patients with IgAN and modest proteinuria (<1 g/day). ERK activation was not associated with elevated galactose-deficient IgA1 or IgG specific for galactose-deficient IgA1 in the serum. In human mesangial cells in vitro, ERK activation through mesangial IgA1 receptor (CD71) controlled pro-inflammatory cytokine secretion and was induced by large-molecular-mass IgA1-containing circulating immune complexes purified from patient sera. Moreover, IgA1-dependent ERK activation required renin-angiotensin system as its blockade was efficient in reducing proteinuria in those patients exhibiting substantial mesangial activation of ERK. Thus, ERK activation alters mesangial cell-podocyte crosstalk, leading to renal dysfunction in IgAN. Assessment of MAPK/ERK activation in diagnostic renal biopsies may predict the therapeutic efficacy of renin-angiotensin system blockers in IgAN. Kidney International (2012) 82, 1284-1296; doi:10.1038/ki.2012.192; published online 5 September 2012

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyclosporine (CsA) remains an important immunosuppressant for transplantation and for treatment of autoimmune diseases. The most troublesome side effect of CsA is renal injury. Acute CsA-induced nephrotoxicity is characterized by reduced renal blood flow (RBF) and glomerular filtration rate (GFR) due to afferent arteriole vasoconstriction. Annexin A1 (ANXA1) is a potent anti-inflammatory protein with protective effect in renal ischemia/reperfusion injury. Here we study the effects of ANXA1 treatment in an experimental model of acute CsA nephrotoxicity. Salt-depleted rats were randomized to treatment with VH (vehicles 1 mL/kg body weight/day), ANXA1 (Ac2-26 peptide 1 mg/kg body weight/day intraperitoneally), CsA (20 mg/kg body weight/day subcutaneously) and CsA + ANXA1 (combination) for seven days. We compared renal function and hemodynamics, renal histopathology, renal tissue macrophage infiltration and renal ANXA1 expression between the four groups. CsA significantly impaired GFR and RBF, caused tubular dilation and macrophage infiltration and increased ANXA1 renal tissue expression. Treatment with ANXA1 attenuated CSA-induced hemodynamic changes, tubular injury and macrophage infiltration. ANXA1 treatment attenuated renal hemodynamic injury and inflammation in an acute CsA nephrotoxicity model.