5 resultados para IMIDAZOLIUM SALTS

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ionic liquids based on 1-alkyl-3-methylimidazolium cations and the hydrogen sulfate (or bisulfate) anion, HSO4-, are much more viscous than ionic liquids with alkyl sulfates, RSO4-. The structural origin of the high viscosity of HSO4- ionic liquids is unraveled from detailed comparison of the anion Raman bands in 1-ethyl-3-methylimidazolium hydrogen sulfate and 1-butyl-3-methylimidazolium hydrogen sulfate with available data for simple HSO(4)(-) salts in crystalline phase, molten phase, and aqueous solution. Two Raman bands at 1046 and 1010 cm(-1) have been assigned as symmetric stretching modes nu(s)(S = O) of HSO4-, the latter being characteristic of chains of hydrogen-bonded anions. The intensity of this component increases in the supercooled liquid phase. For comparison purposes, Raman spectra of 1-ethyl-3-methylimidazolium ethyl sulfate and 1-butyl-3-methylimidazolium methyl sulfate have been also obtained. There is no indication of difference in the strength of hydrogen bond interactions of imidazolium cations with HSO4- or RSO4- anions. Raman spectra at high pressures, up to 2.6 GPa, are also discussed. Raman spectroscopy provides evidence that hydrogen-bonded anions resulting in anion-anion interaction is the reason for the high viscosity of imidazolium ionic liquids with HSO4-. If the ionic liquid is exposed to moisture, these structures are disrupted upon absorption of water from the atmosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To optimize solubility of drugs, current strategies mainly focus on engineering and screening of smart crystal phases. Two salts of the anti-human immunodeficiency virus (HIV) drug lamivudinenamely, lamivudine hydrochloride and lamivudine hydrochloride monohydrate, were prepared in the course of screening the crystallization conditions of lamivudine duplex, an uncommon DNA-mimic, double-stranded helical structure made up of partially protonated drug pairs. Here, water solubilities of lamivudine hydrochloride, lamivudine hydrochloride monohydrate, and lamivudine duplex are reported. The aqueous solubility of this anti-HIV drug was significantly increased in both salts and also in lamivudine duplex in relation to the water solubility of lamivudine form II. In comparison with the lamivudine form II incorporated into therapeutic formulations, the drug solubility was increased at a temperature of 299 +/- 2 K by factors of 1.2, 3.3, and 4.5 in lamivudine hydrochloride, lamivudine hydrochloride monohydrate, and lamivudine duplex, respectively, demonstrating that this solid-state property of lamivudine can be improved by crystal engineering strategies. Solubility profiles were understood on the basis of structural and solventsolute interaction approaches. At last, correlations between solubility and crystal structures allowed for a rational approach to understand how this physicochemical feature could be enhanced by engineering new salts of the drug. (C) 2012 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 101:21432154, 2012

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetic resolution of racemic alpha-bromophenylacetamides 1 was achieved in the presence of benzenethiolate and Cinchona alkaloid salts as phase-transfer catalysts or benzenethiol and quinine, yielding (S)-enantioenriched alpha-sulfanylated products. The observed stereoselection was rationalized on the basis of the best fitting of 1 and the resolving agent in the ternary complexes. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salts of the anti-HIV drug lamivudine, with phthalic acid and salicylic acid as counterions, were investigated in this study. Neither the packing of the (lamivudine)(+)(phthalic acid)(-) ion pairs nor the conformation of the lamivudine moiety itself were similar to those found in other multicomponent molecular salts of the drug, such as hydrogen maleate and saccharinate ones, even though all three salts crystallize in the same P2(1)2(1)2(1) orthorhombic space group with similar unit cell metrics. Lamivudine salicylate assumes a different crystal structure to those of the hydrogen maleate and saccharinate salts, crystallizing in the P2(1) monoclinic space group as a monohydrate whose (lamivudine)(+)(salicylic acid)(-) ion pair is assembled through two hydrogen bonds with cytosine as a dual donor to both oxygens of the carboxylate, such as in the pairing of lamivudine with a phthalic acid counterion. In lamivudine salicylate monohydrate, the drug conformation is related to the hydrogen maleate and saccharinate salts. However, such a conformational similarity is not related to the intermolecular interaction patterns. Lamivudine and water molecules alternate into helical chains in the salicylate salt monohydrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Six new lanthanide complexes of stoichiometric formula (C)(2)[Ln(Pic)(5)]-where (C) is a imidazolium cation coming from the ionic liquids 1-butyl-3-methylimidazolium picrate (BMIm-Pic), 1-butyl-3-ethylimidazolium picrate (BEIm-Pic), and 1,3-dibutylimidazolium picrate (BBIm-Pic), and Ln is Eu(III) or Gd(III) ions-have been prepared and characterized. To the best of our knowledge, these are the first cases of Ln(III) pentakis(picrate) complexes. The crystal structures of (BEIm)(2)[Eu(Pic)(5)] and (BBIm)(2)[Eu(Pic)(5)] compounds were determined by single-crystal X-ray diffraction. The [Eu(Pic)(5)](2-) polyhedra have nine oxygen atoms coordinated to the Eu(III) ion, four oxygen atoms from bidentate picrate, and one oxygen atom from monodentate picrate. The structures of the Eu complexes were also calculated using the sparkle model for lanthanide complexes, allowing an analysis of intramolecular energy transfer processes in the coordination compounds. The photoluminescence properties of the Eu(III) complexes were then studied experimentally and theoretically, leading to a rationalization of their emission quantum yields.