5 resultados para I-beam
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Purpose: The aim of this study was to evaluate the accuracy of cone-beam computed tomography (CBCT) for measuring the buccal bone volume around dental implants. Materials and methods: Three to six implants were inserted into the anterior maxilla of eight skulls, depending on the availability of bone, and after this, the CBCT was performed. By means of CBCT image, measurements of the bone wall at three points of the implant were obtained, analyzed and compared with those obtained in the plaster skull casting. Results: The results showed that for the three points of the implants, no statistically significant difference in the measurements was obtained from the plaster model and CBCT images. Conclusions: CBCT can be a useful tool for assessing buccal bone volume along the implant. To cite this article:?Shiratori LN, Marotti J, Yamanouchi J, Chilvarquer I, Contin I, Tortamano-Neto P. Measurement of buccal bone volume of dental implants by means of cone-beam computed tomography.?Clin. Oral Impl. Res. 23, 2012; 797804.?doi: 10.1111/j.1600-0501.2011.02207.x
Resumo:
The study of ionizing radiation effects on semiconductor devices is of great relevance for the global technological development and is a necessity in some strategic areas in Brazil. This work presents preliminary results of radiation effects in MOSFETs that were exposed to 3.2 Grad radiation dose produced by a 2.6-MeV proton beam. The focus of this work was to electrically characterize a Rectangular-Gate MOSFET (RGT) and a Circular-Gate MOSFET (CGT), manufactured with the On Semiconductor 0.5 mu m standard CMOS fabrication process and to verify a suitable geometry for space applications. During the experiment, I-DS x V-GS curves were measured. After irradiation, the RGT off-state current (I-OFF) increased approximately two orders of magnitude reaching practically the same value of the I-OFF in the CGT, which only doubled its value. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Introduction: This study aimed to evaluate the close proximity established between the maxillary sinus floor and posterior teeth roots apices by using cone-beam computed tomographic scanning. Methods: The relationship of maxillary sinuses and posterior teeth roots, which were divided into 2 groups, was analyzed using i-CAT Vision software (Imaging Sciences, Hatfield, PA). Group 1 included all root apices found in close contact with the maxillary sinus floor without sinus floor elevation, whereas group 2 included all root apices that were protruded within the sinus producing an elevation of the bony cortical. Results: A total of 100 maxillary sinuses and 601 roots apices were evaluated. Group 1 presented 130 of 601 (21.6%) roots and group 2 presented 86 of 601 (14.3%) roots. Conclusions: The second molar mesiobuccal root apex is frequently found in close proximity with the sinus floor, and the relation between these anatomic structures should be considered in order to prevent an iatrogenic procedure and minimize the risks from an infectious disease within the sinus
Resumo:
Reinforced concrete beam elements are submitted to applicable loads along their life cycle that cause shear and torsion. These elements may be subject to only shear, pure torsion or both, torsion and shear combined. The Brazilian Standard Code ABNT NBR 6118:2007 [1] fixes conditions to calculate the transverse reinforcement area in beam reinforced concrete elements, using two design models, based on the strut and tie analogy model, first studied by Mörsch [2]. The strut angle θ (theta) can be considered constant and equal to 45º (Model I), or varying between 30º and 45º (Model II). In the case of transversal ties (stirrups), the variation of angle α (alpha) is between 45º and 90º. When the equilibrium torsion is required, a resistant model based on space truss with hollow section is considered. The space truss admits an inclination angle θ between 30º and 45º, in accordance with beam elements subjected to shear. This paper presents a theoretical study of models I and II for combined shear and torsion, in which ranges the geometry and intensity of action in reinforced concrete beams, aimed to verify the consumption of transverse reinforcement in accordance with the calculation model adopted As the strut angle on model II ranges from 30º to 45º, transverse reinforcement area (Asw) decreases, and total reinforcement area, which includes longitudinal torsion reinforcement (Asℓ), increases. It appears that, when considering model II with strut angle above 40º, under shear only, transverse reinforcement area increases 22% compared to values obtained using model I.
Resumo:
We present a new Ultra Wide Band (UWB) Timed- Array Transmitter System with Beamforming capability for high-resolution remote acquisition of vital signals. The system consists of four identical channels, where each is formed of a serial topology with three modules: programmable delay circuit (PDC or τ), a novel UWB 5th Gaussian Derivative order pulse generator circuit (PG), and a planar Vivaldi antenna. The circuit was designed using 0.18μm CMOS standard process and the planar antenna array was designed with filmconductor on Rogers RO3206 substrate. Spice simulations results showed the pulse generation with 104 mVpp amplitude and 500 ps width. The power consumption is 543 μW, and energy consumption 0.27 pJ per pulse using a 2V power supply at a pulse repetition rate (PRR) of 100 MHz. Electromagnetic simulations results, using CST Microwave (MW) Studio 2011, showed the main lobe radiation with a gain maximum of 13.2 dB, 35.5º x 36.7º angular width, and a beam steering between 17º and -11º for azimuthal (θ) angles and 17º and -18º for elevation (φ) angles at the center frequency of 6 GHz