3 resultados para Hydrophobic surfaces

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multilayer films of carboxymethylcellulose (CMC), a polyanion, and bromide salts of poly(4-vinylpyridine) quaternized with linear aliphatic chains of 2 (ethyl) and 5 (pentyl) carbon atoms, coded as QPVP-C2 and QPVP-C5, respectively, were fabricated by layer-by-layer (LbL) self-assembly onto Si/SiO2 wafers (hydrophilic substrate) or polystyrene, PS, films (hydrophobic substrate). The films were characterized by means of ex situ and in situ ellipsometry, atomic force microscopy (AFM), contact angle measurements and sum frequency generation vibrational spectroscopy (SFG). Antimicrobial tests were used to assess the exposure of pyridinium moieties to the aqueous medium. In situ ellipsometry indicated that for Si/SiO2 the chains were more expanded than the PS films and both substrates systems composed of QPVP-C5 were thicker than those with QPVP-C2. For dried layers, the alkyl side group size had a small effect on the thickness evolution, regardless of the substrate. At pH 2 the multilayers showed high resistance, evidencing that the build-up is driven not only by cooperative polymer-polymer ion pairing, but also by hydrophobic interactions between the alkyl side chains. The LbL films became irregular as the number of depositions increased. After the last deposition, the wettability of QPVP-C2 or QPVP-C5 terminated systems on the Si/SiO2 wafers and PS films were similar, except for QPVP-C2 on Si/SiO2 wafers. Unlike the morphology observed for LbL films on Si/SiO2 wafers, PS induced the formation of porous structures. SFG showed that in air the molecular orientation of pyridinium groups in multilayers with QPVP-C5 was stronger than in those containing QPVP-C2. The exposure of pyridinium moieties to the aqueous medium was more pronounced when the LbL were assembled on Si/SiO2 wafers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We aim in this study to characterize the effect of cations and polycations on the formation of hybrid bilayer membranes (HBMs), especially those that mimic the inner mitochondrial membrane (IMM), with a proper composition of phosphatidylcholine (PC), phosphatidylethanolamine (PE) and cardiolipin (CL) adsorbed on an alkanethiol monolayer. HBMs are versatile membrane mimetics that show promising results in sensor technology. Its formation depends on the fusion of vesicles on hydrophobic surfaces, a process that is not well understood at the molecular level. Our results showed to which extend and in which condition the presence of cations and polycations facilitate the formation of HBMs. The required time for lipid layer formation was reduced several times and the lipid layer reaches the expected thickness of 19.5 +/- 1.8 angstrom, in contrast to only 2 +/- 1.5 angstrom usually observed in the absence of cations. In the presence of specific concentrations of spermine and Ca2+ the amount of adsorbed phospholipids on the thiol layer increased nearly 70% compared to that observed when Na+ was used at concentrations 10 times higher. Divalent cations and polycations adsorb specifically on the lipid headgroups destabilizing the hydration forces, facilitating the process of vesicle fusion and formation of lipid monolayers. The concepts and conditions described in the manuscript will certainly help the development of the field of membrane biosensors. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although the hydrophobicity is usually an arduous parameter to be determined in the field, it has been pointed out as a good option to monitor aging of polymeric outdoor insulators. Concerning this purpose, digital image processing of photos taken from wet insulators has been the main technique nowadays. However, important challenges on this technique still remain to be overcome, such as; images from non-controlled illumination conditions can interfere on analyses and no existence of standard surfaces with different levels of hydrophobicity. In this paper, the photo image samples were digitally filtered to reduce the illumination influence, and hydrophobic surface samples were prepared from wetting silicon surfaces with solution of water-alcohol. Furthermore norevious studies triying to quantify and relate these properties in a mathematical function were found, that could be used in the field by the electrical companies. Based on such considerations, high quality images of countless hydrophobic surfaces were obtained and three different image processing methodologies, the fractal dimension and two Haralick textures descriptors, entropy and homogeneity, associated with several digital filters, were compared. The entropy parameter Haralick's descriptors filtered with the White Top-Hat filter presented the best result to classify the hydrophobicity.