5 resultados para Hydrokinetic turbines

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design and implementation of a new control scheme for reactive power compensation, voltage regulation and transient stability enhancement for wind turbines equipped with fixed-speed induction generators (IGs) in large interconnected power systems is presented in this study. The low-voltage-ride-through (LVRT) capability is provided by extending the range of the operation of the controlled system to include typical post-fault conditions. A systematic procedure is proposed to design decentralised multi-variable controllers for large interconnected power systems using the linear quadratic (LQ) output-feedback control design method and the controller design procedure is formulated as an optimisation problem involving rank-constrained linear matrix inequality (LMI). In this study, it is shown that a static synchronous compensator (STATCOM) with energy storage system (ESS), controlled via robust control technique, is an effective device for improving the LVRT capability of fixed-speed wind turbines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: Arthrospira platensis has been studied for single-cell protein production because of its biomass composition and its ability of growing in alternative media. This work evaluated the effects of different dilution rates (D) and urea concentrations (N0) on A.similar to platensis continuous culture, in terms of growth, kinetic parameters, biomass composition and nitrogen removal. Methods and results: Arthrospira platensis was continuously cultivated in a glass-made vertical column photobioreactor agitated with Rushton turbines. There were used different dilution rates (0.040.44 day-1) and urea concentrations (0.5 and 5 mmol l-1). With N0 = 5 mmol l-1, the maximum steady-state biomass concentration was1415 mg l-1, achieved with D = 0.04 day-1, but the highest protein content (71.9%) was obtained by applying D = 0.12 day-1, attaining a protein productivity of 106.41 mg l-1 day-1. Nitrogen removal reached 99% on steady-state conditions. Conclusions: The best results were achieved by applying N0 = 5 mmol l-1; however, urea led to inhibitory conditions at D = 0.16 day-1, inducing the system wash-out. The agitation afforded satisfactory mixture and did not harm the trichomes structure. Significance and Impact of the Study: These results can enhance the basis for the continuous removal of nitrogenous wastewater pollutants using cyanobacteria, with an easily assembled photobioreactor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article describes a real-world production planning and scheduling problem occurring at an integrated pulp and paper mill (P&P) which manufactures paper for cardboard out of produced pulp. During the cooking of wood chips in the digester, two by-products are produced: the pulp itself (virgin fibers) and the waste stream known as black liquor. The former is then mixed with recycled fibers and processed in a paper machine. Here, due to significant sequence-dependent setups in paper type changeovers, sizing and sequencing of lots have to be made simultaneously in order to efficiently use capacity. The latter is converted into electrical energy using a set of evaporators, recovery boilers and counter-pressure turbines. The planning challenge is then to synchronize the material flow as it moves through the pulp and paper mills, and energy plant, maximizing customer demand (as backlogging is allowed), and minimizing operation costs. Due to the intensive capital feature of P&P, the output of the digester must be maximized. As the production bottleneck is not fixed, to tackle this problem we propose a new model that integrates the critical production units associated to the pulp and paper mills, and energy plant for the first time. Simple stochastic mixed integer programming based local search heuristics are developed to obtain good feasible solutions for the problem. The benefits of integrating the three stages are discussed. The proposed approaches are tested on real-world data. Our work may help P&P companies to increase their competitiveness and reactiveness in dealing with demand pattern oscillations. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The complexity of power systems has increased in recent years due to the operation of existing transmission lines closer to their limits, using flexible AC transmission system (FACTS) devices, and also due to the increased penetration of new types of generators that have more intermittent characteristics and lower inertial response, such as wind generators. This changing nature of a power system has considerable effect on its dynamic behaviors resulting in power swings, dynamic interactions between different power system devices, and less synchronized coupling. This paper presents some analyses of this changing nature of power systems and their dynamic behaviors to identify critical issues that limit the large-scale integration of wind generators and FACTS devices. In addition, this paper addresses some general concerns toward high compensations in different grid topologies. The studies in this paper are conducted on the New England and New York power system model under both small and large disturbances. From the analyses, it can be concluded that high compensation can reduce the security limits under certain operating conditions, and the modes related to operating slip and shaft stiffness are critical as they may limit the large-scale integration of wind generation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Micro-gas turbines are a good alternative for on-site power generation, since their operation is very reliable. The possibility of operating with various fuels increases versatility and, as a result, the usage of these devices. Focusing on a performance improvement of a tri-fuel low-cost micro-gas turbine, this work presents investigations of the inner flow of its combustion chamber. The aim of this analysis was the characterization of the flame structure by the temperature field of the chamber inner flow. The chamber was fuelled with natural gas. In the current chamber, a swirler and a reversed flow configuration were utilized to provide flame stabilization. The inner flow investigations were done with numerical analysis, which were compared to experimental data. The analysis of the inner flow was done with numerical simulations, which used the RSM turbulence model. A β-PDF equilibrium model was adopted to account for the turbulent combustion process. Different models of heat transfer were compared. Thermal radiation and specially heat conduction in the liner walls played significant roles on results.