9 resultados para Hydrogen bonding
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The properties of films of carboxymethyl cellulose, CMC, of different degree of substitution, DS, have been examined by the use of perichromic indicators (probes). The film properties that have been determined are: empirical polarity, E-T(33); "acidity", alpha; "basicity", beta; and dipolarity/polarizability, pi*. This has been achieved by employing the following perichromic probes: 4-nitroaniline, 4-nitroanisole, 4-nitro-N,N-dimethylaniline, and 2,6-dichloro-4-(2,4,6-triphenyl-pyridinium-1-yl)phenolate, WB. The correlations between both E-T(33)- or pi* and DS were found to be linear; that between beta and DS is a second order polynomial; no obvious correlation was found between alpha and DS. The polarities of CMC films are in the range of those of butyl alcohols. As models for CMC, we have employed cellulose plus CMC of high DS; oxidized cellulose with degree of oxidation = 0.5; sodium glucuronate. The former model behaved akin to CMC, but the plots of the perichromic properties versus DS showed different slopes/intercepts. FTIR data and molecular dynamics simulations on the solvation of WB have shown that this difference can be traced to more efficient hydrogen bonding between the film of the model and the probe. This affects the intra-molecular charge-transfer energy of the latter, leading to different responses to the variation of DS. Based on the excellent linear correlation between E-T(33) and DS, for CMC from different origins, we suggest that perichromism is a simple, accurate, and expedient alternative for the determination of DS of the biopolymer derivative.
Resumo:
In this article were studied two xanthone derivatives known as 1,5-dihydroxy-8-methoxyxanthone (I) and 1,3,7-trihydroxy-8-methoxyxanthone (II), which show one water molecule into their crystal structures. In xanthone I, there are water wires contributing to build up channel-like cavities along the c axis, whereas in xanthone II the water is surrounded by three xanthone molecules forming a cage-type structure. The geometries of I and II were optimized using the density functional theory method with B3LYP functional, and the results were compared with crystal structure. Both theoretical and experimental investigations reveal a concordance between structural parameters, with the xanthone core presenting an almost flat conformation and substituents adopting the more stable orientations. In the two compounds, the hydroxyl group linked at position 1 is involved in a resonance-assisted hydrogen bond with the carbonyl group. Besides, the supramolecular arrangement of the host/guest systems are stabilized mainly by classical intermolecular hydrogen bonds (O-H center dot center dot center dot O) involving xanthone-to-water and xanthone-to-xanthone. In addition, C-H center dot center dot center dot O weak hydrogen bonds, as well as pi-pi interactions play an important role to stabilize the crystal self-assembly of xanthones I and II. The results reported here underline the role of inclusion of water molecules and their different arrangement into the crystal structure of two xanthone host/guest systems.
Resumo:
Information on the solvation in mixtures of water, W, and the ionic liquids, ILs, 1-allyl-3-R-imidazolium chlorides; R = methyl, 1-butyl, and 1-hexyl, has been obtained from the responses of the following solvatochromic probes: 2,6-dibromo-4-[(E)-2-(1-R-pyridinium-4-yl)ethenyl] phenolate, R = methyl, MePMBr2; 1-octyl, OcPMBr(2), and the corresponding quinolinium derivative, MeQMBr(2). A model developed for solvation in binary mixtures of W and molecular solvents has been extended to the present mixtures. Our objective is to assess the relevance to solvation of hydrogen-bonding and the hydrophobic character of the IL and the solvatochromic probe. Plots of the medium empirical polarity, E-T(probe) versus its composition revealed non-ideal behavior, attributed to preferential solvation by the IL and, more efficiently, by the IL-W hydrogen-bonded complex. The deviation from linearity increases as a function of increasing number of carbon atoms in the alkyl group of the IL, and is larger than that observed for solvation by W plus molecular solvents (1-propanol and 2-(1-butoxy)ethanol) that are more hydrophobic than the ILs investigated. This enhanced deviation is attributed to the more organized structure of the ILs proper, which persists in their aqueous solutions. MeQMBr(2) is more susceptible to solvent lipophilicity than OcPMBr(2), although the former probe is less lipophilic. This enhanced susceptibility agrees with the important effect of annelation on the contributions of the quinonoid and zwitterionic limiting structures to the ground and excited states of the probe, hence on its response to both medium composition and lipophilicity of the IL.
Resumo:
Layered double hydroxide (LDH) nanocontainers, suitable as carriers for anionic drugs, were intercalated with Pravastatin drug using magnesium-aluminum and zinc-aluminum in a M-II/Al molar ratio equal 2 and different Al3+/Pravastatin molar ratios. Postsynthesis treatments were used in order to increase the materials crystallinity. Hybrid materials were characterized by a set of physical chemical techniques: chemical elemental analysis, X-ray diffraction (XRD), mass coupled thermal analyses, vibrational infrared and Raman spectroscopies, and solid-state C-13 nuclear magnetic resonance (NMR). Results were interpreted in light of computational density functional theory (DFT) calculations performed for Sodium Pravastatin in order to assign the data obtained for the LDH intercalated materials. XRD peaks of LDH-Pravastatin material and the one-dimensional (1D) electron density map pointed out to a bilayer arrangement of Pravastatin in the interlayer region, where its associated carboxylate and vicinal hydroxyl groups are close to the positive LDH. The structural organization observed for the stacked assembly containing the unsymmetrical and bulky monoanion Pravastatin and LDH seems to be promoted by a self-assembling process, in which local interactions are maximized and chloride ion cointercalation is required. It is observed a high similarity among vibrational and C-13 NMR spectra of Na-Pravastatin and LDH-Pravastatin materials. Those features indicate that the intercalation preserves the drug structural integrity. Spectroscopic techniques corroborate the nature of the guest species and their arrangement between the inorganic layers. Changes related to carboxylate, alcohol, and olefinic moieties are observed in both vibrational Raman and C-13 NMR spectra after the drug intercalation. Thus, Pravastatin ions are forced to be arranged as head to tail through intermolecular hydrogen bonding between adjacent organic species. The thermal decomposition profile of the hybrid samples is distinct of that one observed for Na-Pravastatin salt, however, with no visible increase in the thermal behavior when the organic anion is sequestrated within LDH gap.
Resumo:
Xylanases (EC 3.2.1.8 endo-1,4-glycosyl hydrolase) catalyze the hydrolysis of xylan, an abundant hemicellulose of plant cell walls. Access to the catalytic site of GH11 xylanases is regulated by movement of a short beta-hairpin, the so-called thumb region, which can adopt open or closed conformations. A crystallographic study has shown that the D11F/R122D mutant of the GH11 xylanase A from Bacillus subtilis (BsXA) displays a stable "open" conformation, and here we report a molecular dynamics simulation study comparing this mutant with the native enzyme over a range of temperatures. The mutant open conformation was stable at 300 and 328 K, however it showed a transition to the closed state at 338 K. Analysis of dihedral angles identified thumb region residues Y113 and T123 as key hinge points which determine the open-closed transition at 338 K. Although the D11F/R122D mutations result in a reduction in local inter-intramolecular hydrogen bonding, the global energies of the open and closed conformations in the native enzyme are equivalent, suggesting that the two conformations are equally accessible. These results indicate that the thumb region shows a broader degree of energetically permissible conformations which regulate the access to the active site region. The R122D mutation contributes to the stability of the open conformation, but is not essential for thumb dynamics, i.e., the wild type enzyme can also adapt to the open conformation.
Resumo:
The ionization of chlorophyll-c(2) in liquid methanol was investigated by a sequential quantum mechanical/Monte Carlo approach. Focus was placed on the determination of the first ionization energy of chlorophyll-c(2). The results show that the first vertical ionization energy (IE) is red-shifted by 0.47 +/- 0.24 eV relative to the gas-phase value. The red-shift of the chlorophyll-c(2) IE in the liquid phase can be explained by Mg center dot center dot center dot OH hydrogen bonding and long-ranged electrostatic interactions in solution. The ionization threshold for chlorophyll-c2 in liquid methanol is close to 6 eV. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A delivery system containing polymeric (Eudragit) nanoparticles has been developed for encapsulation and controlled release of bioactive flavonoids (quercetin). Nanoparticles were fabricated using a solvent displacement method. Particle size, morphology, and charge were measured by light scattering, electron microscopy and zeta-potential. Encapsulation efficiency (EE) and release profiles were determined using electrochemical methods. Molecular interactions within the particle matrix were characterized by X-ray diffraction, differential scanning calorimetry, and infrared spectroscopy. Antioxidant properties of free and encapsulated quercetin were analyzed by TBARS and fluorescence spectroscopy. Bioaccessibility of quercetin was evaluated using an in vitro digestion model. Relatively small (d a parts per thousand aEuro parts per thousand 370 nm) anionic polymeric nanoparticles were formed containing quercetin in a non-crystalline form (EE a parts per thousand aEuro parts per thousand 67 %). The main interaction between quercetin and Eudragit was hydrogen bonding. Encapsulated quercetin remained stable during 6 months storage and maintained its antioxidant activity. Quercetin bioaccessibility within simulated small intestinal conditions was improved by encapsulation. The knowledge obtained from this study will facilitate the rational design and fabrication of polymeric nanoparticles as oral delivery systems for encapsulation, protection, and release of bioactive compounds.
Resumo:
In the crystal structure of the title compound, C20H18N2O2S, molecules are linked by bifurcated C-H center dot center dot center dot O hydrogen-bond interactions, giving rise to chains whose links are composed of alternating centrosymmetrically disposed pairs of molecules and characterized by R-2(2)(10) and R-2(2)(20) hydrogen-bonding motifs. Also, N-H center dot center dot center dot S hydrogen bonds form infinite zigzag chains along the [010] direction, which exhibit the C(4) motif. Hirshfeld surface and fingerprint plots were used to explore the intermolecular interactions in the crystal structure. This analysis confirms the important role of C-H center dot center dot center dot O hydrogen bonds in the molecular conformation and in the crystal structure, providing a potentially useful tool for a full understanding of the intermolecular interactions in acylthiourea derivatives.
cis-Bis(1,10-phenanthroline-j2N,N0)bis-(pyridin-4-amine-jN1)ruthenium(II) bis(hexafluoridophosphate)
Resumo:
In the title complex, [Ru(C12H8N2)2(C5H6N2)2](PF6)2, the RuII atom is bonded to two -diimine ligands, viz. 1,10- phenanthroline (phen), in a cis configuration, in addition with with two 4-aminopyridine (4Apy) ligands, resulting in a distorted octahedral coordination geometry. N—H F hydrogen-bonding interactions play an important role in the crystal assembly: 21-screw-axis-related complex molecules and PF6 counter-ions alternate in helical chains formed along the a axis by means of these contacts. N—H contacts (H centroid = 3.45 A ° ) are responsible for cross-linking between the helical chains along [001].