7 resultados para Hydroelectric power plants
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
In October 2008, the Brazilian Government announced plans to invest US$212 billion in the construction of nuclear power plants, totaling a joint capacity of 60,000 MW. Apart from this program, officials had already announced the completion of the construction of the nuclear plant Angra III; the construction of large-scale hydroelectric plans in the Amazon and the implantation of natural gas, biomass and coal thermoelectric plants in other regions throughout the country. Each of these projects has its proponents and its opponents, who bring forth concerns and create heated debates in the specialized forums. In this article, some of these concerns are explained, especially under the perspective of the comparative analysis of costs involved. Under such merit figures, the nuclear option, when compared to hydro plants, combined with conventional thermal and biomass-fueled plants, and even wind, to expand Brazilian power-generation capacity, does not appear as a priority. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents an analysis of the impact of the lightning overvoltages on the operational performance of the energized shield wire line technology (SWL) implemented in two locations of the State of Rondonia, Brazil. The analysis covers the periods of 1996 to 2000 (SWL Jaru) and 1997 to 2002 (SWL Itapua do Oeste), and shows that lightning is responsible for most of the system outages. The paper describes the satisfactory results achieved with the system, showing that the isolation and energization of the shield wires does not deteriorate the lightning performance of the 230 kV transmission lines. Comparisons between the performances of the SWL technology, conventional 34.5 kV lines, and thermal power plants in operation in the same region are also presented. The results demonstrate the technical and economical viability of the SWL technology and show that its application can lead to a postponement of investments.
Resumo:
Oxide-dispersion-strengthened (ODS) ferritic-martensitic steels are candidates for applications in fusion power plants where micro structural long-term stability at temperatures of 650 degrees C to 700 degrees C are required. The microstructural stability of 80% cold-rolled reduced-activation ferritic-martensitic 9% Cr ODS-Eurofer steel was investigated within a wide range of temperatures (300 degrees C to 1350 degrees C). Fine oxide dispersion is very effective to prevent recrystallization in the ferritic phase field. The low recrystallized volume fraction (<0.1) found in samples annealed at 800 degrees C is associated with the nuclei found at prior grain boundaries and around coarse M23C6 particles. The combination of retarding effects such as Zener drag and concurrent recovery decrease the local stored energy and impede further growth of the recrystallization nuclei. Above 90 degrees C, martensitic transformation takes place with consequent coarsening. Significant changes in crystallographic texture are also reported.
Resumo:
A new measurement of the B-11(p,alpha(0))Be-8 has been performed applying the Trojan horse method (THM) to the H-2(B-11,alpha Be-8(0))n quasi-free reaction induced at a laboratory energy of 27 MeV. The astrophysical S(E) factor has been extracted from similar to 600 keV down to zero energy by means of an improved data analysis technique and it has been compared with direct data available in the literature. The range investigated here overlaps with the energy region of the light element LiBeB stellar burning and with that of future aneutronic fusion power plants using the B-11+p fuel cycle. The new investigation described here confirms the preliminary results obtained in the recent TH works. The origin of the discrepancy between the direct estimate of the B-11(p,alpha(0))Be-8 S(E)-factor at zero energy and that from a previous THM investigation is quantitatively corroborated. The results obtained here support, within the experimental uncertainties, the low-energy S(E)-factor extrapolation and the value of the electron screening potential deduced from direct measurements.
Resumo:
Introduction: An epidemiological study was undertaken to identify determinant factors in the occurrence of American cutaneous leishmaniasis in areas under the influence of hydroelectric plants in Paranapanema river, State of Parana, Brazil. The ecological aspects of the phlebotomine fauna were investigated. Methods: Sandflies were sampled with automatic light traps from February 2004 to June 2006 at 25 sites in the urban and rural areas of Itambaraca, and in Porto Almeida and Sao Joaquim do Pontal. Results: A total of 3,187 sandflies of 15 species were captured. Nyssomyia neivai predominated (34.4%), followed by Pintomyia pessoai (32.6%), Migonemyia migonei (11.6%), Nyssomyia whitmani (8.8%), and Pintomyia fischeri (2.7%), all implicated in the transmission of Leishmania. Males predominated for Ny. neivai, and females for the other vector species, with significant statistical differences (p < 0.001). Nyssomyia neivai, Pi. pessoai, Ny. whitmani, Brumptomyia brumpti, Mg. migonei, and Pi. fischeri presented the highest values for the Standardized Species Abundance Index (SSAI). The highest frequencies and diversities were found in the preserved forest in Porto Almeida, followed by forests with degradation in Sao Joaquim do Pontal and Vila Rural. Conclusions: Sandflies were captured in all localities, with the five vectors predominating. Ny. neivai had its highest frequencies in nearby peridomestic environments and Pi. pessoai in areas of preserved forests. The highest SSAI values of Ny. neivai and Pi. pessoai reflect their wider dispersion and higher frequencies compared with other species, which seems to indicate that these two species may be transmitting leishmaniasis in the area.
Resumo:
INTRODUCTION: An epidemiological study was undertaken to identify determinant factors in the occurrence of American cutaneous leishmaniasis in areas under the influence of hydroelectric plants in Paranapanema river, State of Paraná, Brazil. The ecological aspects of the phlebotomine fauna were investigated. METHODS: Sandflies were sampled with automatic light traps from February 2004 to June 2006 at 25 sites in the urban and rural areas of Itambaracá, and in Porto Almeida and São Joaquim do Pontal. RESULTS: A total of 3,187 sandflies of 15 species were captured. Nyssomyia neivai predominated (34.4%), followed by Pintomyia pessoai (32.6%), Migonemyia migonei (11.6%), Nyssomyia whitmani (8.8%), and Pintomyia fischeri (2.7%), all implicated in the transmission of Leishmania. Males predominated for Ny. neivai, and females for the other vector species, with significant statistical differences (p < 0.001). Nyssomyia neivai, Pi. pessoai, Ny. whitmani, Brumptomyia brumpti, Mg. migonei, and Pi. fischeri presented the highest values for the Standardized Species Abundance Index (SSAI). The highest frequencies and diversities were found in the preserved forest in Porto Almeida, followed by forests with degradation in São Joaquim do Pontal and Vila Rural. CONCLUSIONS: Sandflies were captured in all localities, with the five vectors predominating. Ny. neivai had its highest frequencies in nearby peridomestic environments and Pi. pessoai in areas of preserved forests. The highest SSAI values of Ny. neivai and Pi. pessoai reflect their wider dispersion and higher frequencies compared with other species, which seems to indicate that these two species may be transmitting leishmaniasis in the area.
Resumo:
Trigeneration systems have been used with advantage in the last years in distributed electricity generation systems as a function of a growth of natural gas pipeline network distribution system, tax incentives, and energy regulation policies. Typically, a trigeneration system is used to produce electrical power simultaneously with supplying heating and cooling load by recovering the combustion products thermal power content that otherwise would be driven to atmosphere. Concerning that, two small scale trigeneration plants have been tested for overall efficiency evaluation and operational comparison. The first system is based on a 30 kW (ISO) natural gas powered microturbine, and the second one uses a 26 kW natural gas powered internal combustion engine coupled to an electrical generator as a prime mover. The stack gases from both machines were directed to a 17.6 kW ammonia-water absorption refrigeration chiller for producing chilled water first and next to a water heat recovery boiler in order to produce hot water. Experimental results are presented along with relevant system operational parameters for appropriate operation including natural gas consumption, net electrical and thermal power production, i.e., hot and cold water production rates, primary energy saving index, and the energy utilization factor over total and partial electrical load operational conditions. (c) 2011 Elsevier Ltd. All rights reserved.