6 resultados para Human Physiological Performance.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The purpose of this study was to determine the physiological, anthropometric, performance, and nutritional characteristics of the Brazil Canoe Polo National Team. Ten male canoe polo athletes (age 26.7 +/- 4.1 years) performed a battery of tests including assessments of anthropometric parameters, upper-body anaerobic power (Wingate), muscular strength, aerobic power, and nutritional profile. In addition, we characterized heart rate and plasma lactate responses and the temporal pattern of the effort/recovery during a simulated canoe polo match. The main results are as follows: body fat, 12.3 +/- 4.0%; upper-body peak and mean power, 6.8 +/- 0.5 and 4.7 +/- 0.4 W . kg(-1), respectively; 1-RM bench press, 99.1 +/- 11.7 kg; peak oxygen uptake, 44.3 +/- 5.8 mL . kg(-1) . min(-1); total energy intake, 42.8 +/- 8.6 kcal . kg(-1); protein, carbohydrate, and fat intakes, 1.9 +/- 0.1, 5.0 +/- 1.5, and 1.7 +/- 0.4 g . kg(-1), respectively; mean heart rate, 146 +/- 11 beats . min(-1); plasma lactate, 5.7 +/- 3.8 mmol . L-1 at half-time and 4.6 +/- 2.2 mmol . L-1 at the end of the match; effort time (relative to total match time), 93.1 +/- 3.0%; number of sprints, 9.6 +/- 4.4. The results of this study will assist coaches, trainers, and nutritionists in developing more adequate training programmes and dietary interventions for canoe polo athletes.
Resumo:
The aim of this study was to compare time-motion indicators during judo matches performed by athletes from different age groups. The following age groups were analysed: Pre-Juvenile (13-14 years, n=522), Juvenile (15-16 years, n 353); Junior (19 years, n = 349) and Senior (>20 years, n = 587). The time-motion indicators included: Total Combat Time, Standing Combat Time, Displacement Without Contact, Gripping Time, Groundwork Combat Time and Pause Time. Analysis of variance (ANOVA) one-way and the Tukey test, as well as the Kruskal-Wallis test and Mann-Whitney (for non-parametric data), were conducted, using P < 0.05 as significance level. The results showed that all analysed groups obtained a median of 7 (first quantile - 3, third quantile - 12) sequences of combat/pause cycles. In total time of combat, the result was: for Total Combat Time, Standing Combat Time and Gripping Time: Pre-Juvenile and Senior were significantly longer than Juvenile and Junior. Considering Displacement Without Contact, Junior was significantly longer than all other age groups. For Groundwork Combat Time, Senior was significantly longer than all other age groups and Pre-Juvenile was longer than Junior. These results can be used to improve the physiological performance in intermittent practices, as well as technicaltactical training during judo sessions.
Resumo:
This work aimed to evaluate the influence of different concentrations of Zantedeschia aethiopica Spreng. extract on the physiological performance of the seed and on the response of the antioxidant metabolism of lettuce seedlings. The treatments consisted of leaves extracts from Z. aethiopica at concentrations of 0, 6, 12, 25 and 50%. Germination, first germination count, germination speed and index, length of shoot and radicle, seedling total dry mass, chlorophyll content, activity of superoxide dismutase, catalase and ascorbarte peroxidase enzymes, lipid peroxidation, hydrogen peroxide quantification and seedling emergence, length of organs, and total dry mass of seedlings were evaluated. The percentage of germination, the length of the shoot and radicle of seedlings and the total dry mass of seedlings grown in the greenhouse were reduced as the concentration of the extract increased. There were increases of electrical conductivity, of superoxide dismutase, catalase and ascorbate peroxidadase enzymes and the amount of hydrogen peroxide and lipid peroxidation in seedlings with increasing extract concentration. The extract reduced the physiological quality of lettuce seeds and induced an increased production of hydrogen peroxide in seedlings, which increased the activity of antioxidant enzymes that were not effective in tissue detoxification, resulting in cellular damage and increased numbers of abnormal seedlings.
Resumo:
The aim of this work was to evaluate the effects of low-level laser therapy (LLLT) on exercise performance, oxidative stress, and muscle status in humans. A randomized double-blind placebo-controlled crossover trial was performed with 22 untrained male volunteers. LLLT (810 nm, 200 mW, 30 J in each site, 30 s of irradiation in each site) using a multi-diode cluster (with five spots - 6 J from each spot) at 12 sites of each lower limb (six in quadriceps, four in hamstrings, and two in gastrocnemius) was performed 5 min before a standardized progressive-intensity running protocol on a motor-drive treadmill until exhaustion. We analyzed exercise performance (VO(2 max), time to exhaustion, aerobic threshold and anaerobic threshold), levels of oxidative damage to lipids and proteins, the activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), and the markers of muscle damage creatine kinase (CK) and lactate dehydrogenase (LDH). Compared to placebo, active LLLT significantly increased exercise performance (VO(2 max) p = 0.01; time to exhaustion, p = 0.04) without changing the aerobic and anaerobic thresholds. LLLT also decreased post-exercise lipid (p = 0.0001) and protein (p = 0.0230) damages, as well as the activities of SOD (p = 0.0034), CK (p = 0.0001) and LDH (p = 0.0001) enzymes. LLLT application was not able to modulate CAT activity. The use of LLLT before progressive-intensity running exercise increases exercise performance, decreases exercise-induced oxidative stress and muscle damage, suggesting that the modulation of the redox system by LLLT could be related to the delay in skeletal muscle fatigue observed after the use of LLLT.
Resumo:
Abstract Background The present article briefly reviews the weight loss processes in combat sports. We aimed to discuss the most relevant aspects of rapid weight loss (RWL) in combat sports. Methods This review was performed in the databases MedLine, Lilacs, PubMed and SciELO, and organized into sub-topics: (1) prevalence, magnitude and procedures, (2) psychological, physiological and performance effects, (3) possible strategies to avoid decreased performance (4) organizational strategies to avoid such practices. Results There was a high prevalence (50%) of RWL, regardless the specific combat discipline. Methods used are harmful to performance and health, such as laxatives, diuretics, use of plastic or rubber suits, and sauna. RWL affects physical and cognitive capacities, and may increase the risk of death. Conclusion Recommendations during different training phases, educational and organizational approaches are presented to deal with or to avoid RWL.
Resumo:
A rapid, sensitive and specific method for quantifying hydroxocobalamin in human plasma using paracetamol as the internal standard (IS) is described. The analyte and the IS were extracted from plasma by liquid-liquid extraction using an organic solvent (ethanol 100%; -20°C). The extracts were analyzed by high performance liquid chromatography coupled with electrospray tandem mass spectrometry (HPLC-MS-MS). Chromatography was performed on Prevail C8 3 μm, analytical column (2.1×100 mm i.d.). The method had a chromatographic run time of 3.4 min and a linear calibration curve over the range 5-400 ng.mL-1 (r>0.9983). The limit of quantification was 5 ng.mL-1. The method was also validated without the use of the internal standard. The precision in the intra-batch validation with IS was 9.6%, 8.9%, 1.0% and 2.8% whereas without IS was 9.2%, 8.2%, 1.8% and 1.5% for 5, 15, 80 and 320 ng/mL, respectively. The accuracy in intra-batch validation with IS was 108.9%, 99.9%, 98.9% and 99.0% whereas without IS was 101.1%, 99.3%, 97.5% and 92.5% for 5, 15, 80 and 320 ng/mL, respectively. The precision in the inter-batch validation with IS was 9.4%, 6.9%, 4.6% and 5.5% whereas without IS was 10.9%, 6.4%, 5.0% and 6.2% for 5, 15, 80 and 320 ng/mL, respectively. The accuracy in inter-batch validation with IS was 101.9%, 104.1%, 103.2% and 99.7% whereas without IS was 94.4%, 101.2%, 101.6% and 96.0% for 5, 15, 80 and 320 ng/mL, respectively. This HPLC-MS-MS procedure was used to assess the pharmacokinetics of Hydroxo cobalamin following intramuscular injection 5000 μg in healthy volunteers of both sexes (10 males and 10 females). The volunteers had the following clinical characteristics (according to gender and expressed as mean ± SD [range]): males: age: 32.40 ± 8.00 y [23.00-46.00], height: 1.73 ± 0.07 m [1.62-1.85], body weight: 72.48 ± 10.22 Kg [60.20- 88.00]; females: age: 28.60 ± 9.54 y [18.00-44.00], height: 1.60 ± 0.05 m [1.54-1.70], body weight: 58.64 ± 6.09 Kg [51.70- 66.70]. The following pharmacokinetic parameters were obtained from the hydroxocobalamin plasma concentration vs. time curves: AUClast, T1/2, Tmax, Vd, Cl, Cmax and Clast. The pharmacokinetic parameters were 120 (± 25) ng/mL for Cmax, 2044 (± 641) ng.h/mL for AUClast, 8 (± 3.2) ng.mL-1 for Clast, 38 (± 15.8) hr for T1/2 and 2.5 (range 1-6) hr for Tmax. Female volunteers presented significant (p=0.0136) lower AUC (1706 ± 704) ng.h/mL) and larger (p=0.0205) clearance (2.91 ± 1.41 L/hr), as compared to male 2383 ± 343 ng.h/mL and 1.76 ± 0.23 L/hr, respectively. These pharmacokinetic differences could explain the higher prevalence of vitamin B12 deficiency in female patients. The method described validated well without the use of the internal standard and this approach should be investigated in other HPLC-MS-MS methods.