31 resultados para Host immune effectors

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pneumococcal meningitis is a life-threatening disease characterized by an acute infection affecting the pia matter, arachnoid and subarachnoid space. The intense inflammatory response is associated with a significant mortality rate and neurologic sequelae, such as, seizures, sensory-motor deficits and impairment of learning and memory. The aim of this study was to evaluate the effects of acute and extended administration of cannabidiol on pro-inflammatory cytokines and behavioral parameters in adult Wistar rats submitted to pneumococcal meningitis. Male Wistar rats underwent a cisterna magna tap and received either 10 mu l of sterile saline as a placebo or an equivalent volume of S. pneumoniae suspension. Rats subjected to meningitis were treated by intraperitoneal injection with cannabidiol (2.5, 5, or 10 mg/kg once or daily for 9 days after meningitis induction) or a placebo. Six hours after meningitis induction, the rats that received one dose were killed and the hippocampus and frontal cortex were obtained to assess cytokines/chemokine and brain-derived neurotrophic factor levels. On the 10th day, the rats were submitted to the inhibitory avoidance task. After the task, the animals were killed and samples from the hippocampus and frontal cortex were obtained. The extended administration of cannabidiol at different doses reduced the TNF-alpha level in frontal cortex. Prolonged treatment with canabidiol, 10 mg/kg, prevented memory impairment in rats with pneumococcal meningitis. Although descriptive, our results demonstrate that cannabidiol has anti-inflammatory effects in pneumococcal meningitis and prevents cognitive sequel. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The course of leprosy depends of the host immune response which ranges from the lepromatous pole (LL) to the tuberculoid pole (TT). A comparative study was conducted in 60 patients with the LL and TT The results showed a mean expression of TGF-beta of 339 +/- 99.4 cells/field for TT and of 519.2 +/- 68.2 cells/field for LL. Frequency of apoptosis was 6.3 +/- 1.8 in TT and 14.0 +/- 6.1 in LL. A correlation (p = 0.0251) between TGF-beta and caspase-3 in the LL was found. This finding indicates a role of TGF-beta and apoptosis in the immune response in leprosy. (C) 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The major cause of athlete's foot is Trichophyton rubrum, a dermatophyte or fungal pathogen of human skin. To facilitate molecular analyses of the dermatophytes, we sequenced T. rubrum and four related species, Trichophyton tonsurans, Trichophyton equinum, Microsporum canis, and Microsporum gypseum. These species differ in host range, mating, and disease progression. The dermatophyte genomes are highly colinear yet contain gene family expansions not found in other human-associated fungi. Dermatophyte genomes are enriched for gene families containing the LysM domain, which binds chitin and potentially related carbohydrates. These LysM domains differ in sequence from those in other species in regions of the peptide that could affect substrate binding. The dermatophytes also encode novel sets of fungus-specific kinases with unknown specificity, including nonfunctional pseudokinases, which may inhibit phosphorylation by competing for kinase sites within substrates, acting as allosteric effectors, or acting as scaffolds for signaling. The dermatophytes are also enriched for a large number of enzymes that synthesize secondary metabolites, including dermatophyte-specific genes that could synthesize novel compounds. Finally, dermatophytes are enriched in several classes of proteases that are necessary for fungal growth and nutrient acquisition on keratinized tissues. Despite differences in mating ability, genes involved in mating and meiosis are conserved across species, suggesting the possibility of cryptic mating in species where it has not been previously detected. These genome analyses identify gene families that are important to our understanding of how dermatophytes cause chronic infections, how they interact with epithelial cells, and how they respond to the host immune response. IMPORTANCE Athlete's foot, jock itch, ringworm, and nail infections are common fungal infections, all caused by fungi known as dermatophytes (fungi that infect skin). This report presents the genome sequences of Trichophyton rubrum, the most frequent cause of athlete's foot, as well as four other common dermatophytes. Dermatophyte genomes are enriched for four gene classes that may contribute to the ability of these fungi to cause disease. These include (i) proteases secreted to degrade skin; (ii) kinases, including pseudokinases, that are involved in signaling necessary for adapting to skin; (iii) secondary metabolites, compounds that act as toxins or signals in the interactions between fungus and host; and (iv) a class of proteins (LysM) that appear to bind and mask cell wall components and carbohydrates, thus avoiding the host's immune response to the fungi. These genome sequences provide a strong foundation for future work in understanding how dermatophytes cause disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: NALP3-inflammasome is an innate mechanism, alternative to type-1 interferon, which is able to recognize nucleic acids and viruses in the cytoplasm and to induce pro-inflammatory response. Here, we hypothesized the involvement of inflammasome in the early defense against HIV-1 and in the full maturation of dendritic cells: for this, we evaluated the response of dendritic cells pulsed with HIV-1 in terms of inflammasome activation in healthy donors. Moreover, inflammasome response to HIV was evaluated in HIV-infected individuals. Design and methods: Monocyte-derived dendritic cells isolated from 20 healthy individuals (HC-DC) and 20 HIV-1-infected patients (HIV-DC) were pulsed with alditrithiol-2-inactivated HIV-1. We then analyzed inflammasome genes expression and interleukin-1 beta (IL-1 beta) secretion. Results: In HC-DC, HIV-1 induced higher NLRP3/NALP3 mRNA expression compared with other inflammasome genes such as NALP1/NLRP1 or IPAF/NLRC4 (P < 0.001). This augmented expression was accompanied by CASP1-increased and IL1B-increased mRNA levels and by a significant increment of IL-1b secretion (P < 0.05). Otherwise, HIV-1 failed to activate inflammasome and cytokine production in HIV-DC. HIV-DC showed an increased NLRP3/NALP3 basal expression, suggesting a chronic inflammatory profile of patients' immune cells. Conclusion: HIV-1 was able to induce a NALP3-inflammasome response in healthy individuals, indicating that this inflammasome could play a role in the first steps of HIV-1 infection; the consequent inflammatory process may be important for directing host immune response against the virus and/or disease progression. HIV-DC seemed to be chronically activated, but unresponsive against pathogens. Our findings could be of interest considering the ongoing research about dendritic cell manipulation and therapeutic strategies for AIDS involving dendritic cell-based immune-vaccines. (C) 2011 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Proteinaceous toxins are observed across all levels of inter-organismal and intra-genomic conflicts. These include recently discovered prokaryotic polymorphic toxin systems implicated in intra-specific conflicts. They are characterized by a remarkable diversity of C-terminal toxin domains generated by recombination with standalone toxin-coding cassettes. Prior analysis revealed a striking diversity of nuclease and deaminase domains among the toxin modules. We systematically investigated polymorphic toxin systems using comparative genomics, sequence and structure analysis. Results: Polymorphic toxin systems are distributed across all major bacterial lineages and are delivered by at least eight distinct secretory systems. In addition to type-II, these include type-V, VI, VII (ESX), and the poorly characterized "Photorhabdus virulence cassettes (PVC)", PrsW-dependent and MuF phage-capsid-like systems. We present evidence that trafficking of these toxins is often accompanied by autoproteolytic processing catalyzed by HINT, ZU5, PrsW, caspase-like, papain-like, and a novel metallopeptidase associated with the PVC system. We identified over 150 distinct toxin domains in these systems. These span an extraordinary catalytic spectrum to include 23 distinct clades of peptidases, numerous previously unrecognized versions of nucleases and deaminases, ADP-ribosyltransferases, ADP ribosyl cyclases, RelA/SpoT-like nucleotidyltransferases, glycosyltranferases and other enzymes predicted to modify lipids and carbohydrates, and a pore-forming toxin domain. Several of these toxin domains are shared with host-directed effectors of pathogenic bacteria. Over 90 families of immunity proteins might neutralize anywhere between a single to at least 27 distinct types of toxin domains. In some organisms multiple tandem immunity genes or immunity protein domains are organized into polyimmunity loci or polyimmunity proteins. Gene-neighborhood-analysis of polymorphic toxin systems predicts the presence of novel trafficking-related components, and also the organizational logic that allows toxin diversification through recombination. Domain architecture and protein-length analysis revealed that these toxins might be deployed as secreted factors, through directed injection, or via inter-cellular contact facilitated by filamentous structures formed by RHS/YD, filamentous hemagglutinin and other repeats. Phyletic pattern and life-style analysis indicate that polymorphic toxins and polyimmunity loci participate in cooperative behavior and facultative 'cheating' in several ecosystems such as the human oral cavity and soil. Multiple domains from these systems have also been repeatedly transferred to eukaryotes and their viruses, such as the nucleo-cytoplasmic large DNA viruses. Conclusions: Along with a comprehensive inventory of toxins and immunity proteins, we present several testable predictions regarding active sites and catalytic mechanisms of toxins, their processing and trafficking and their role in intra-specific and inter-specific interactions between bacteria. These systems provide insights regarding the emergence of key systems at different points in eukaryotic evolution, such as ADP ribosylation, interaction of myosin VI with cargo proteins, mediation of apoptosis, hyphal heteroincompatibility, hedgehog signaling, arthropod toxins, cell-cell interaction molecules like teneurins and different signaling messengers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Paracoccidioidomycosis is a granulomatous pulmonary infection that is generally controlled by chemotherapy. The efficacy of treatment, however, is limited by the status of the host immune response. The inhibition of a Th-2 immunity or the stimulation of Th-1 cytokines generally increases the efficacy of antifungal drugs.(1) This has been achieved by immunization with an internal peptide of the major diagnostic antigen gp43 of Paracoccidioides brasiliensis. Peptide 10 (QTLIAIHTLAIRYAN) elicits an IFN-gamma rich Th-1 immune response that protects against experimental intratracheal infection by this fungus. The combination of chemotherapy with P10 immunization showed additive protective effect even after 30 d of infection or in anergic mice, rendering in general, increased production of IL-12 and IFN-gamma and reduction of IL-4 and IL-10. Immunotherapy with P10 even in the absence of simultaneous chemotherapy has been effective using various protocols, adjuvants, nanoparticles, P10-primed dendritic cells, and especially a combination of plasmids encoding the P10 minigene and IL-12. Gene therapy, in a long-term infection protocol succeeded in the virtual elimination of the fungus, preserving the lung structure, free from immunopathological side effects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction: Vitamin D is responsible for the regulation of certain genes at the transcription level, via interaction with the vitamin D receptor, and influences host immune responses and aspects of bone development, growth, and homeostasis. Our aim was to investigate the association of TaqI vitamin D receptor gene polymorphism with external apical root resorption during orthodontic treatment. Methods: Our subjects were 377 patients with Class II Division 1 malocclusion, divided into 3 groups: (1) 160 with external apical root resorption <= 1.43 mm, (2) 179 with external apical root resorption >1.43 mm), and (3) 38 untreated subjects. External apical root resorption of the maxillary incisors was evaluated on periapical radiographs taken before and after 6 months of treatment. After DNA collection and purification, vitamin D receptor TaqI polymorphism analysis was performed by polymerase chain reaction-restriction fragment length polymorphism. Univariate and multivariate analyses were performed to verify the association of clinical and genetic variables with external apical root resorption (P <0.05). Results: There was a higher proportion of external apical root resorption in orthodontically treated patients compared with the untreated subjects. In patients orthodontically treated, age higher than 14 years old, initial size of the maxillary incisor root superior to 30 mm, and premolar extraction were associated with increased external apical root resorption. Genotypes containing the C allele were weakly associated with protection against external apical root resorption (CC + CT x TT [odds ratio, 0.29; 95% confidence interval, 0.07-1.23; P = 0.091]) when treated orthodontic patients were compared to untreated individuals. Conclusions: Clinical factors and vitamin D receptor TaqI polymorphism were associated with external apical root resorption in orthodontic patients. (Am J Orthod Dentofacial Orthop 2012; 142: 339-47)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dengue virus non-structural 1 (NS1) protein contributes to evasion of host immune defenses and represents a target for immune responses. Evidences generated in experimental models, as well as the immune responses elicited by infected individuals, showed that induction of anti-NS1 immunity correlates with protective immunity but may also result in the generation of cross-reactive antibodies that recognize platelets and proteins involved in the coagulation cascade. In the present work, we evaluated the immune responses, protection to type 2 dengue virus (DENV2) challenges and safety parameters in BALB/c mice vaccinated with a recombinant NS1 protein in combination with three different adjuvants: aluminum hydroxide (alum), Freund's adjuvant (FA) or a genetically detoxified derivative of the heat-labile toxin (LTG33D), originally produced by some enterotoxigenic Escherichia coil (ETEC) strains. Mice were subcutaneously (s.c.) immunized with different vaccine formulations and the induced NS1-specific responses, including serum antibodies and T cell responses, were measured. Mice were also subjected to lethal challenges with the DENV2 NGC strain. The results showed that maximal protective immunity (50%) was achieved in mice vaccinated with NS1 in combination with LIG33D. Analyses of the NS1-specific immune responses showed that the anti-virus protection correlated mainly with the serum anti-NS1 antibody responses including higher avidity to the target antigen. Mice immunized with LTG33D elicited a prevailing IgG2a subclass response and generated antibodies with stronger affinity to the antigen than those generated in mice immunized with the other vaccine formulations. The vaccine formulations were also evaluated regarding induction of deleterious side effects and, in contrast to mice immunized with the FA-adjuvanted vaccine, no significant hepatic damage or enhanced C-reactive protein levels were detected in mice immunized with NS1 and LTG33D. Similarly, no detectable alterations in bleeding time and hematological parameters were detected in mice vaccinated with NS1 and LTG33D. Altogether, these results indicate that the combination of a purified recombinant NS1 and a nontoxic LT derivative is a promising alternative for the generation of safe and effective protein-based anti-dengue vaccine. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Antimicrobial peptides are present in animals, plants and microorganisms and play a fundamental role in the innate immune response. Gomesin is a cationic antimicrobial peptide purified from haemocytes of the spider Acanthoscurria gomesiana. It has a broad-spectrum of activity against bacteria, fungi, protozoa and tumour cells. Candida albicans is a commensal yeast that is part of the human microbiota. However, in immunocompromised patients, this fungus may cause skin, mucosal or systemic infections. The typical treatment for this mycosis comprises three major categories of antifungal drugs: polyenes, azoles and echinocandins; however cases of resistance to these drugs are frequently reported. With the emergence of microorganisms that are resistant to conventional antibiotics, the development of alternative treatments for candidiasis is important. In this study, we evaluate the efficacy of gomesin treatment on disseminated and vaginal candidiasis as well as its toxicity and biodistribution. Results: Treatment with gomesin effectively reduced Candida albicans in the kidneys, spleen, liver and vagina of infected mice. The biodistribution of gomesin labelled with technetium-99 m showed that the peptide is captured in the kidneys, spleen and liver. Enhanced production of TNF-alpha, IFN-gamma and IL-6 was detected in infected mice treated with gomesin, suggesting an immunomodulatory activity. Moreover, immunosuppressed and C. albicans-infected mice showed an increase in survival after treatment with gomesin and fluconazole. Systemic administration of gomesin was also not toxic to the mice Conclusions: Gomesin proved to be effective against experimental Candida albicans infection. It can be used as an alternative therapy for candidiasis, either alone or in combination with fluconazole. Gomesin's mechanism is not fully understood, but we hypothesise that the peptide acts through the permeabilisation of the yeast membrane leading to death and/or releasing the yeast antigens that trigger the host immune response against infection. Therefore, data presented in this study reinforces the potential of gomesin as a therapeutic antifungal agent in both humans and animals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Toxosplasma gondii is the model parasite of the phylum Apicomplexa, which contains numerous obligate intracellular parasites of medical and veterinary importance, including Eimeria, Sarcocystis, Cryptosporidium, Cyclospora, and Plasmodium species. Members of this phylum actively enter host cells by a multistep process with the help of microneme protein (MIC) complexes that play important roles in motility, host cell attachment, moving junction formation, and invasion. T. gondii (Tg)MIC1-4-6 complex is the most extensively investigated microneme complex, which contributes to host cell recognition and attachment via the action of TgMIC1, a sialic acid-binding adhesin. Here, we report the structure of TgMIC4 and reveal its carbohydrate-binding specificity to a variety of galactose-containing carbohydrate ligands. The lectin is composed of six apple domains in which the fifth domain displays a potent galactose-binding activity, and which is cleaved from the complex during parasite invasion. We propose that galactose recognition by TgMIC4 may compromise host protection from galectin-mediated activation of the host immune system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: T. cruzi strains have been divided into six discrete typing units (DTUs) according to their genetic background. These groups are designated T. cruzi I to VI. In this context, amastigotes from G strain (T. cruzi I) are highly infective in vitro and show no parasitemia in vivo. Here we aimed to understand why amastigotes from G strain are highly infective in vitro and do not contribute for a patent in vivo infection. Methodology/Principal Findings: Our in vitro studies demonstrated the first evidence that IFN-gamma would be associated to the low virulence of G strain in vivo. After intraperitoneal amastigotes inoculation in wild-type and knockout mice for TNF-alpha, Nod2, Myd88, iNOS, IL-12p40, IL-18, CD4, CD8 and IFN-gamma we found that the latter is crucial for controlling infection by G strain amastigotes. Conclusions/Significance: Our results showed that amastigotes from G strain are highly infective in vitro but did not contribute for a patent infection in vivo due to its susceptibility to IFN-gamma production by host immune cells. These data are useful to understand the mechanisms underlying the contrasting behavior of different T. cruzi groups for in vitro and in vivo infection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract Background Saliva is a key element of interaction between hematophagous mosquitoes and their vertebrate hosts. In addition to allowing a successful blood meal by neutralizing or delaying hemostatic responses, the salivary cocktail is also able to modulate the effector mechanisms of host immune responses facilitating, in turn, the transmission of several types of microorganisms. Understanding how the mosquito uses its salivary components to circumvent host immunity might help to clarify the mechanisms of transmission of such pathogens and disease establishment. Methods Flow cytometry was used to evaluate if increasing concentrations of A. aegypti salivary gland extract (SGE) affects bone marrow-derived DC differentiation and maturation. Lymphocyte proliferation in the presence of SGE was estimated by a colorimetric assay. Western blot and Annexin V staining assays were used to assess apoptosis in these cells. Naïve and memory cells from mosquito-bite exposed mice or OVA-immunized mice and their respective controls were analyzed by flow cytometry. Results Concentration-response curves were employed to evaluate A. aegypti SGE effects on DC and lymphocyte biology. DCs differentiation from bone marrow precursors, their maturation and function were not directly affected by A. aegypti SGE (concentrations ranging from 2.5 to 40 μg/mL). On the other hand, lymphocytes were very sensitive to the salivary components and died in the presence of A. aegypti SGE, even at concentrations as low as 0.1 μg/mL. In addition, A. aegypti SGE was shown to induce apoptosis in all lymphocyte populations evaluated (CD4+ and CD8+ T cells, and B cells) through a mechanism involving caspase-3 and caspase-8, but not Bim. By using different approaches to generate memory cells, we were able to verify that these cells are resistant to SGE effects. Conclusion Our results show that lymphocytes, and not DCs, are the primary target of A. aegypti salivary components. In the presence of A. aegypti SGE, naïve lymphocyte populations die by apoptosis in a caspase-3- and caspase-8-dependent pathway, while memory cells are selectively more resistant to its effects. The present work contributes to elucidate the activities of A. aegypti salivary molecules on the antigen presenting cell-lymphocyte axis and in the biology of these cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Periodontitis is an inflammatory disease that results from an interaction between dental biofilm agents and the host immune-inflammatory response. Periodontopathogenic organisms, such as Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola, as well as the host's susceptibility, represented by the host's genetic makeup, are the key factors that influence this complex disease. Recently, we identified haplotypes in the IL4 gene that were associated with chronic periodontitis (CP). This study aimed to evaluate whether subjects with different IL4 haplotypes (TCI/CCI and TTD/CTI) would be differentially colonized by periodontopathogens and whether they would respond differently to non-surgical periodontal therapy. Thirty-nine patients carrying the IL4 haplotype of genetic susceptibility to CP (IL4+) or protection against CP (IL4-) were evaluated. Those groups were further subdivided into individuals with CP (CP IL4+ or CP IL4-) and those that were periodontally healthy (H) (H IL4+ or H IL4-). CP patients were submitted to non-surgical periodontal therapy. Clinical and microbiological analyses were performed considering the data at baseline and 45 and 90 days after periodontal therapy. Periodontopathogens levels were evaluated by absolute quantitative polymerase chain reaction (qPCR). The baseline data revealed that the total levels of periodontopathogens were higher in the CP IL4+ than in the CP IL4- groups. Clinical analyses revealed that the periodontal therapy was equally effective, independent of the subject's IL4 genetic load. The TCI/CCI IL4 haplotype, previously associated with genetic susceptibility to CP, was also associated with increased levels of periodontopathogenic bacteria, but this genetic background did not influence the response to non-surgical periodontal treatment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is postulated that accumulation of malaria-infected Red Blood Cells (iRBCs) in the liver could be a parasitic escape mechanism against full destruction by the host immune system. Therefore, we evaluated the in vivo mechanism of this accumulation and its potential immunological consequences. A massive liver accumulation of P. c. chabaudi AS-iRBCs (PciRBCs) was observed by intravital microscopy along with an over expression of ICAM-1 on day 7 of the infection, as measured by qRT-PCR. Phenotypic changes were also observed in regulatory T cells (Tregs) and dendritic cells (DCs) that were isolated from infected livers, which indicate a functional role for Tregs in the regulation of the liver inflammatory immune response. In fact, the suppressive function of liver-Tregs was in vitro tested, which demonstrated the capacity of these cells to suppress naive T cell activation to the same extent as that observed for spleen-Tregs. On the other hand, it is already known that CD4+ T cells isolated from spleens of protozoan parasite-infected mice are refractory to proliferate in vivo. In our experiments, we observed a similar lack of in vitro proliferative capacity in liver CD4+ T cells that were isolated on day 7 of infection. It is also known that nitric oxide and IL-10 are partially involved in acute phase immunosuppression; we found high expression levels of IL-10 and iNOS mRNA in day 7-infected livers, which indicates a possible role for these molecules in the observed immune suppression. Taken together, these results indicate that malaria parasite accumulation within the liver could be an escape mechanism to avoid sterile immunity sponsored by a tolerogenic environment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Malaria is a widespread infectious disease caused by the parasite Plasmodium. During pregnancy, malaria infection leads to a range of complications that can affect both the mother and fetus, including stillbirth, infant mortality, and low birth weight. In this study, we utilized a mouse model of placental malaria (PM) infection to determine the importance of the protein MyD88 in the host immune response to Plasmodium during pregnancy. Initially, we demonstrated that Plasmodium berghei NK65GFP adhered to placental tissue via chondroitin sulfate A and induced PM in mice with a C57BL/6 genetic background. To evaluate the involvement of MyD88 in the pathology of PM, we performed a histopathological analysis of placentas obtained from MyD88(-/-) and wild-type (WT) mice following infection on the 19th gestational day. Our data demonstrated that the detrimental placental alterations observed in the infected mice were correlated with the expression of MyD88. Moreover, in the absence of this protein, production of interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) was significantly reduced in the infected mice. More importantly, in contrast to fetuses from infected WT mice, which exhibited a reduction in body weight, the fetuses from infected MyD88(-/-) mice did not display significant weight loss compared to their noninfected littermates. In addition, we observed a decrement of maternal care associated with malaria infection, which was attenuated in the MyD88-deficient mice. Collectively, the results of this study illustrate the pivotal importance of the MyD88 signaling pathway in the pathogenesis of placental malaria, thus presenting new possibilities for targeting MyD88 in therapeutic interventions.