5 resultados para Hornos
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
We present a family of networks whose local interconnection topologies are generated by the root vectors of a semi-simple complex Lie algebra. Cartan classification theorem of those algebras ensures those families of interconnection topologies to be exhaustive. The global arrangement of the network is defined in terms of integer or half-integer weight lattices. The mesh or torus topologies that network millions of processing cores, such as those in the IBM BlueGene series, are the simplest member of that category. The symmetries of the root systems of an algebra, manifested by their Weyl group, lends great convenience for the design and analysis of hardware architecture, algorithms and programs.
Resumo:
Fluctuation-dissipation theorems can be used to predict characteristics of noise from characteristics of the macroscopic response of a system. In the case of gene networks, feedback control determines the "network rigidity," defined as resistance to slow external changes. We propose an effective Fokker-Planck equation that relates gene expression noise to topology and to time scales of the gene network. We distinguish between two situations referred to as normal and inverted time hierarchies. The noise can be buffered by network feedback in the first situation, whereas it can be topology independent in the latter.
Resumo:
Food safety is a global concern. Meat represents the most important protein source for humans. Thus, contamination of meat products by nonessential elements is a ready source of human exposure. In addition, knowledge of the concentration of essential elements is also relevant with respect to human nutrition. The aim of the present study was to determine the concentration of 17 elements in pork, beef, and chicken produced in Brazil. Meat samples were analyzed by inductively coupled plasma mass spectrometry. The estimated daily intake for nonessential elements including arsenic (As), cadmium (Cd), lead (Pb), mercury (Hg), and antimony (Sb) through meat consumption is below the toxicological reference values. However, high levels were detected for the nonessential element cesium (Cs), mainly in beef samples, an observation that deserves future studies to identify the source of contamination and potential adverse consequences.
Resumo:
Measurement-based quantum computation is an efficient model to perform universal computation. Nevertheless, theoretical questions have been raised, mainly with respect to realistic noise conditions. In order to shed some light on this issue, we evaluate the exact dynamics of some single-qubit-gate fidelities using the measurement-based quantum computation scheme when the qubits which are used as a resource interact with a common dephasing environment. We report a necessary condition for the fidelity dynamics of a general pure N-qubit state, interacting with this type of error channel, to present an oscillatory behavior, and we show that for the initial canonical cluster state, the fidelity oscillates as a function of time. This state fidelity oscillatory behavior brings significant variations to the values of the computational results of a generic gate acting on that state depending on the instants we choose to apply our set of projective measurements. As we shall see, considering some specific gates that are frequently found in the literature, the fast application of the set of projective measurements does not necessarily imply high gate fidelity, and likewise the slow application thereof does not necessarily imply low gate fidelity. Our condition for the occurrence of the fidelity oscillatory behavior shows that the oscillation presented by the cluster state is due exclusively to its initial geometry. Other states that can be used as resources for measurement-based quantum computation can present the same initial geometrical condition. Therefore, it is very important for the present scheme to know when the fidelity of a particular resource state will oscillate in time and, if this is the case, what are the best times to perform the measurements.
Resumo:
We consider a general class of mathematical models for stochastic gene expression where the transcription rate is allowed to depend on a promoter state variable that can take an arbitrary (finite) number of values. We provide the solution of the master equations in the stationary limit, based on a factorization of the stochastic transition matrix that separates timescales and relative interaction strengths, and we express its entries in terms of parameters that have a natural physical and/or biological interpretation. The solution illustrates the capacity of multiple states promoters to generate multimodal distributions of gene products, without the need for feedback. Furthermore, using the example of a three states promoter operating at low, high, and intermediate expression levels, we show that using multiple states operons will typically lead to a significant reduction of noise in the system. The underlying mechanism is that a three-states promoter can change its level of expression from low to high by passing through an intermediate state with a much smaller increase of fluctuations than by means of a direct transition.